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Abstract—We demonstrate the efficacy of dynamic mode
decomposition (DMD) based reduced-order model (ROM) in
characterizing the transient behavior of full-order kinetic plasma
simulation. The full-order kinetic plasma model makes use of
the finite-element time-domain (FETD) based electromagnetic
particle-in-cell (EM-PIC) algorithm. We apply the suggested
reduced-order method for the case of an expanding plasma
ball and study the effect of DMD reconstructed self fields
on the particle dynamics in transient region. Such analysis is
highly desirable for understanding underlying physics of complex
plasmas as well as for reducing computation cost of high-fidelity
plasma simulations.

I. INTRODUCTION

The nonlinear nature of existing fluid-based and kinetic
plasma models not only makes it difficult to comprehend the
underlying multiscale physics, but also act as bottleneck for
model based control techniques such as model predictive con-
trol (MPC) [1]. In recent years several studies have revealed
that for a vast majority of scenarios involving plasma simula-
tions, the total energy can be modelled using few (less than
ten) spatio-temporal coherent features [2], [3]. This showcases
the need for reduced order methods able to extract the key
underlying spatio-temporal features from high fidelity plasma
simulations. Dynamic Mode Decomposition (DMD) is a data-
driven reduced order method which became popular since its
introduction [4] for its “equation-free” nature. References [5],
[6] have demonstrated DMD’s effectiveness in extracting low
dimensional features from magnetohydrodynamics (MHD)
simulations. Our preliminary work [7] shows promise of such
method for collisionless kinetic plasma models based on elec-
tromagnetic particle-in-cell (EM-PIC) simulations. However,
the effect of DMD predicted fields on particle (electron)
behavior in the transient region for PIC algorithms is yet to be
explored. Transient plasma analysis can be useful for several
physical scenarios of interest [8], [9]. In this paper we take a
simple case of expanding plasma ball and observe the effect
of DMD reconstructed self fields on particle dynamics in the
transient state.

II. THEORETICAL BACKGROUND

The EM-PIC algorithm updates the self electric and mag-
netic fields on a discrete spatial grid via Maxwell’s equations
and implements the plasma particle kinetics through four

cyclic stages, 1) field-update, 2) gather, 3) particle-pusher, 4)
scatter [10], [11].

Using the harvested data from the EM-PIC simulation,
DMD produces a set of DMD modes (Φk, k = 1, 2, . . . , r)
and corresponding DMD frequencies (ωk) to capture the
spatio-temporal variation of the system [12], [13]. We will
give a brief overview of the standard DMD algorithm [13]
using the degree of freedom (DoF) [10] of self electric
field (e) as the quantity of interest. The first step is the
data harvesting step where we collect (m + 1) snapshots
of e at different time instants inside a specified time win-
dow, which we refer to as the harvesting region/window
or the DMD window. We form the snapshot matrix (X =
[e(n0) e(n0+∆n) . . . e(n0+(m−1)∆n)]) and the shifted snapshot
matrix (X ′ = [e(n0+∆n) e(n0+2∆n) . . . e(n0+m∆n)]), where
e(n) = [e

(n)
1 e

(n)
2 . . . e

(n)
N1

]T , e(n)
j being the DoF of self elec-

tric field at jth edge at nth time step. N1 is the number of mesh
edges in the discrete spatial mesh and ∆n is the number of
time steps between two consecutive snapshots. DMD assumes
X ′ ≈ AX . Next we perform singular value decomposition
(SVD) of X producing X = UΣV ∗. Performing order reduc-
tion, we choose only the first r significant columns of U , r
rows and columns for Σ and r columns for V , giving us Ur,Σr

and Vr respectively. The low-dimensional projection of A is
given by Ã = U∗rX

′VrΣ−1
r , the eigendecomposition of which

generates ÃW = WΛ. The DMD modes are essentially the
columns of Φ, where Φ = X ′VrΣ−1

r W . The corresponding
DMD frequencies are given as ωk = ln(λk)/(∆n∆t), where
λk are the elements of the diagonal matrix Λ and ∆t is
the time step interval. The final reconstruction is given by
e(t) =

∑r
k=1 ϑkΦke

ωk(t−t0), where t0 = n0∆t and ϑk are the
scaling factors which are calculated by solving an optimization
problem [14]. For better accuracy we use stacked snapshot
matrices. Further details can be found in [12].

III. NUMERICAL EXPERIMENT AND DISCUSSION

We consider a two dimensional (2-D) expanding plasma ball
in a square cavity surrounded by perfect magnetic conductor
(PMC) walls. The solution domain with dimension L×L with
L = 10 m (see Fig. 1a), is discretized by an unstructured grid
having N0 = 8037 nodes, N1 = 23797 edges and N2 = 15761
triangular cells. Superparticles are initially placed within a
circle of radius 0.5 m at the center of the cavity. Initially the
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(a) Full-order (b) With DMD predicted self fields

Fig. 1. Snapshot of the plasma ball expansion at n = 25000. Yellow
(full-order) and cyan (DMD) dots represent the superparticles. Red
arrows for both cases show the self electric field lines.

plasma ball is assumed to be neutral, with each electron-ion
pair located at the exact same position. Superparticles repre-
senting electrons are then provided with initial radial velocity
following a Maxwellian distribution and they are absorbed
after they hit the outer boundary. Each superparticle represents
2 × 105 electrons. The time step interval ∆t = 0.1 ns. We
sample the data at every 500th time step until n = 500000.

The plasma ball initially expands and then contracts due to
the self-field interaction, causing oscillations which eventually
dies down and the superparticles attain equilibrium producing
a steady state self-field configuration. We are interested in
observing the effect of DMD predicted self-fields on the
particle behavior, namely the phase-space plot, average radial
velocity (vR), radial particle density (Np) and average current
density (JR) during this transient regime. The DMD window
spans from n = 500(n0) to n = 50000 with ∆n = 1000. We
perform DMD on both DoF of self electric field (e) and self
magnetic field (b). We choose r = 19 and 1 leading to 11 and
1 DMD modes for e and b respectively. We replace the self
field values in the field update stage with DMD-reconstructed
ones e,b and carry out the gather and particle-pusher stage to
observe the effect on superparticles. Fig. 2a shows similarity
between full-order and DMD predicted phase-space plot. This
is also reflected in the radial (R) variation of Np, vR (Fig. 2b)
and JR (Fig. 2c), (calculated on [R − ε, R + ε]). Overall, the
particle behavior predicted by DMD reconstructed self-fields
shows good agreement with full-order EM-PIC simulation.
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