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Abstract—Despite recent advances in the field, the stochastic 

analysis of EM models is still time-consuming. Thus, the 

approximation of the EM model by a surrogate model is often the 

only choice if a sufficient amount of simulations is required. This 

paper provides a systematic and novel methodology to implement 

the polynomial chaos expansion surrogate models in stochastic 

analysis. The necessary steps in the construction of surrogate 

model based on polynomial chaos expansion are explained. As an 

example, we estimate the statistics of the specific absorption rate 

of a smart watch GSM antenna on a human wrist. Results show 

that the proposed method is accurate and time-saving in the cases 

when numerous rounds of simulation are required. 
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I. INTRODUCTION 

To describe the electromagnetic problems, we typically use 
deterministic models, such models are assigned to definite 
values and we find a deterministic solution to the problem. In 
reality, however, those problems mostly have uncertainties, like 
indefinite parameters, imprecise experimental results, etc. [1] 

The simplest approach to study the model uncertainty is 
Monte-Carlo analysis. Monte-Carlo analysis yields reasonable 
results only if the number of samples is quite large, which 
requires a great computational effort if full-wave simulations are 
applied. To avoid long simulation time, we consider using 
surrogate models to replace full-wave simulations in Monte-
Carlo analysis. Advances in machine learning research provide 
mathematical models which are used to generalize and predict 
the results of highly nonlinear and multivariable problems. This 
paper provides a systematic methodology to implement one of 
the most popular models, polynomial chaos expansion (PCE) 
surrogate model in Monte-Carlo analysis of an electromagnetic 
design. In general, PCE surrogate model relies on well-
established experimental or simulation results decomposed in 
the form of polynomial interpolation.  

The aim of the paper is to consider the variation of the 
outputs of an EM system induced by the variations of the inputs. 
We denote full-wave simulation models as 𝑦 = 𝑀(𝒙) , and 

surrogate models of PCE as 𝑦̂ = 𝑀̂(𝒙) , with the inputs 𝒙 
affected by some possible random variations. It is worth noting 
that random variables 𝒙  have to be statistically independent 
when applied in PCE. 

In this paper, Section 2 explains the construction of PCE 
surrogate model. Section 3 discusses a benchmark of human 

exposure stochastic analysis, in which a surrogate model 
estimates the specific absorption rate (SAR) of a GSM antenna 
in smart watch placed on a human wrist. Monte-Carlo analysis 
is performed on the surrogate model to characterize the SAR 
statistics with respect to human morphology variation.   

II. SURROGATE MODEL OF PCE 

A. Data Sampling 

To build a surrogate model, full-wave simulations are 
performed on a point set {𝒙𝑒}  to get the experiments’ data 
𝑦(𝒙𝑒). The sampling set has two constraints: 1. The sampling is 
as uniformly distributed as possible over the entire input 
parameter space to capture possible nonlinearities of the 
simulated phenomena; 2. The number of simulations is large 
enough to estimate all the coefficients of the surrogate model, 
but limited to reduce the cost of the number of simulations. This 
paper implements Latin Hypercube Sampling (LHS), which 
generates a sample set of parameter values from a 
multidimensional statistical distribution while taking care of a 
uniform filling of space. As an illustration of the sampling, a 
two-dimensional space is divided into square grids, based on 
equally probable intervals. LHS contains the sample positions if 
there is only one sample in each row and each column. 

B. Model Selection 

Generally, surrogate models of PCE 𝑦̂ = 𝑀̂(𝒙) with degree 

of 𝐾 can be expressed as [2]: 

𝑦̂ = ∑ 𝛽𝑘𝜓𝑘(𝒙)

𝐾−1

𝑘=0

                              (1) 

Here {𝜓𝑘(𝒙)}  is a set of orthogonal multivariable 

polynomials defined by 𝜓𝑘(𝒙) = ∏ 𝜋𝑘𝑖

𝑖 (𝑥𝑖)𝑁
𝑖=1 , and the order of 

the multivariable polynomials is the sum of the order of each 

variable, ∑ 𝑘𝑖
𝑁
𝑘𝑖=1 = 𝑘. PCE is formulated with uniform random 

variables with basic function 𝜋𝑘𝑖
(𝑥) as Legendre polynomials, 

which has the following properties: 

𝑃−1(𝑥) = 𝑃0(𝑥) = 1                          (2) 

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥𝑃(𝑥) − 𝑛𝑃𝑛−1(𝑥)   𝑛 ∈ 𝑁   (3) 

C. Coefficient Calculation 

The coefficients {𝛽}  in PCE are calculated by fitting the 
model response 𝒚̂𝒆 with the full-wave simulation results 𝒚𝒆. The 
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calculation by least-mean-square regression aims at computing 
PCE coefficients that minimize the mean-square error of 
approximation of the model response. The least-mean-square 
regression calculates the coefficients as 𝛽 = (Ψ𝑇Ψ)−1Ψ𝑇𝒚. 

One drawback of the least-mean-square regression is that 
every term in expansion has a non-zero coefficient although 
some polynomials may have little importance in the expansion. 
The least absolute shrinkage and selection operator (lasso) 
regression adds a penalty equal to the absolute value of 
coefficients. The goal of the algorithm is to minimize 

∑ (𝑦𝑖 − ∑ 𝜓𝑖𝑗𝛽𝑘

𝑘

)

2𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑘|

𝐾−1

𝑘=1

                (4) 

This type of regulation can set some coefficients as zero and 
eliminate the polynomials from the model, resulting in sparse 
models with fewer polynomials. 

D. Model Verification 

The use of alternative models requests a method to validate 
these surrogate models. This paper uses the leave-one-out cross-
validation (LOOCV), which is often used in computer 
experiments. Assume you have 𝑛 experiments 𝑦𝑖 = 𝑀(𝑥𝑖), you 
can use 𝑛 − 1 experiments to build a model and one experiment 
to test it. If we consider the 𝑛  simulations, 𝒚 =
{𝑦1, 𝑦2, … , 𝑦𝑝, … , 𝑦𝑛} that have been performed and if one notes 

𝑀̂−𝑖  the model based on 𝑛 − 1  simulations, {𝑦1, 𝑦2, … , 𝑦𝑛} −
{𝑦𝑗}, we can estimate the mean square error of the model using 

𝑒𝑟𝑟𝑙𝑜𝑜 =
1

𝑛
∑ (𝑀̂−𝑖(𝑥𝑖) − 𝑀(𝑥𝑖))

2
𝑛

𝑖=1

             (5) 

III. BENCHMARK OF SAR CHARACTERIZATIONS 

To verify the compliance of wireless systems with safety 
limits when used close to human body, it is of interest to 
characterize SAR. Since the human population is highly diverse 
and it is impossible to generalize any result obtained on one 
model, the object of this benchmark is to analyze the statistics 
of SAR in terms of morphology variation. The approaches that 
use full-wave simulation are not suitable for the Monte-Carlo 
method. To overcome this limitation, a surrogate model with 
sparse PCE has been used.  

This benchmark characterizes the SAR statistics based on 
such a configuration that the radiation of a GSM antenna in a 
smart watch is absorbed by a human wrist. IEEE Std. C95.1 
standard sets the limit of the exposure to wrists as 4W/kg 10-g 
volume averaged SAR (SAR10g). One feasible way to embed a 
GSM antenna in a watch is to use the watch strap as a dipole [3]. 
The antenna operates on the GSM 900 band and the equivalent 
radiated power of the GSM antenna is 0.25W RMS. Fig. 1 shows 
the biological model representing the morphology of most 
human beings’ wrists. There are totally seven geometric 
parameters that determine the sizes and locations of bones and 
vessels in a wrist. We provide three scenarios of GSM dipole 
antenna placements as shown in Fig. 2.  

A surrogate model is generated and a Monte-Carlo test with 
1000 evaluations is operated for each scenario. Fig.3 shows the 

histograms of the SAR10g occurrence. We can see that if the 
antenna is placed just on top of the skin, the SAR10g is very 
likely (96.2%) to exceed the 4 W/kg limit. If we place the GSM 
dipole on top of a 1mm thick watch strap, we still get a large 
chance (59.9%) that the SAR10g does not satisfy the 4W/kg 
criterion. If the GSM dipole is placed on top of a normal watch 
strap with 2.5mm thickness, the SAR10g’s of all of the samples 
are less than the criterion. 

Fig. 1. Human wrist model. Its morphology is controled by seven parameters.  

Fig. 2. Three scenarios of a GSM dipole antenna on a smart watch. (a) The 

dipole is placed underneath a dielectric watch strap and directly touches 

skin, (b) the dipole is placed on top of a dielectric watch strap, the strap 
thickness is 1mm, (c) the dipole is placed on top of a dielectric watch 

strap, the strap thickness is 2.5mm. 

Fig. 3. Histograms of Monte-Carlo analysis with 1000 surrogate model 

evaluations in the cases of  (a) the antenna underneath a strap, (b) antenna 

placed on top of a 1mm strap, (c) antenna placed on top of a 2.5mm strap. 
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