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Abstract—We demonstrate that a periodic transmission line 

consisting of uniform lossless segments together with discrete gain 

and radiation-loss elements supports exceptional points of 

degeneracy (EPDs). We provide analytical expressions for the 

conditions that guarantee the coalescence of eigenvalues and 

eigenvectors.  We show the dispersion diagram and discuss the 

tunability of the EPD frequency. Additionally, a special case is  

shown where the  eigenvectors coalesce for all frequencies when a 

specific relationship between transmission line characteristic 

impedance, and gain/loss elements holds; in other words, in this 

situation, exceptional points merge to a line of frequency. The class 

of EPDs proposed in this work is very promising in many of 

applications that incorporate radiation losses.  

I. INTRODUCTION 

Exceptional points of degeneracy (EPDs) are points in 
parameter space that describe a strong degeneracy in an 
electromagnetic system. At the EPD, two or more eigenstates of 
the system coalesce into a single degenerate eigenstate. Due to 
this fact, ‘D’ is used to stress the importance of the degeneracy 
of eigenvectors and not only of eigenvalues [1]. The number of 
degenerated eigenstates is referred to the order of the exceptional 
point. In proximity of an EPD, eigenvalues associated to the 
coalescing eigenvectors change with respect to frequency as

( ) ( )m
e e      , in which e , e  and m are the degenerate 

eigenvalue, EPD angular frequency, and order of EPD 
respectively.  

Exceptional points have been found in systems satisfying 
parity-time symmetry [2], in lossless waveguides [3], and also in 
time-varying systems [4, 5]. The EPD phenomenon has been 
proved to have a wide range of applications, including high 
quality factor (Q) and low threshold lasers [6], single-mode 
operating lasers [7], etc. Moreover, the deviation of the 
perturbed eigenvalues from the degenerate eigenvalue is large 
when a small perturbation to a system parameter is applied; this 
level of sensitivity brings another class of applications in sensors 
[8]. There are a few kinds of structures that exhibit EPD:  
Periodic lossless waveguides [9], structures with balanced gain 
and loss [10], and uniform transmission lines (TLs) with proper 
dispersion [11]. In this work, we will consider a periodic 
structure with uniform TLs together with elements of gain and 
loss.  

II. TRANSMISSION LINE FORMULATION AND EPD 

We consider the simple TL periodically loaded with shunt gain 

and loss elements shown in Fig. 1. An analogous formulation 

can be easily obtained for the case when gain and loss are series 

elements. 

We divide the unit cell into five distinct parts (for simplicity, 

lines are assumed to have similar characteristic impedance, but 

with possibly different electrical lengths). Using the transfer 

matrix of a shunt element and lossless TL, we form a relation 

between voltage-current between two sides of the unit cell as 

1n n Ψ MΨ , in which the state vector is defined as

[ ]tn n nV IΨ , with t indicating the transpose action. 

Furthermore the unit cell transfer matrix M  is the result of the 

multiplication of five transfer matrices:  

2 13 gTL Yr TL TLM M M M M M .                          (1) 

Note that here we use forward transfer matrices, commonly 

used in various disciplines, which are just the inverse of 

backward ABCD transfer matrices. We look for solutions 

satisfying the Floquet’s condition 1
jkd

n neΨ Ψ


  , where d is 

the TL period, and we implicitly assume the 
j te 

 time 

convention. This leads to an eigenvalue problem in the form of

[ ]jkd
ne M I Ψ 0 , where I  is the identity matrix of order 

two. Eigenvalues 
jkde   are found by finding the roots of 

the characteristic polynomial 

 
Fig. 1. Unit cell of a periodic transmission line (TL) made of three segments 

and loaded with shunt lossy ( rY ) and gain (g) elements. 
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where i  is the electrical length of ith TL segment at the 

frequency of the interest (i.e., the EPD frequency ef ), and 0Z  

is the TL characteristic impedance, assumed to be the same for 

all TL segments. To have two identical roots in a 2nd order 

polynomial of the form 
2 0a b    , 

2 4a b  must be zero. 

Forcing this condition on the coefficients of the characteristic 

polynomial results in  

 1 2 3 p      , where  p is  an integer number,              (3) 

                             
2 2

0 1 34 / ( sin ( ))rg Z Y     .                  (4) 

If these two conditions are met, the two roots will be equal with

( 1)jkd pe   . Fig. 2 depicts an example with

1 2 345 , 90 , 45        at f = 3 GHz and 20rY   mS. If a 

specific EPD frequency is demanded by design, the electrical 

lengths should be selected at that ef . Coalescence of the 

eigenvalues is only a necessary condition for EPDs, therefore 

we need to show that also the eigenvectors of the system 

coalesce. The two eigenvectors are found analytically as

   2
0 0 04 / 1r r

t

r r rjZ Y g j Y g Y gZ Y g jY gZ
  

        
. 

It is clear that if conditions (3) and (4) are met, the two 

eigenvectors coalesce to a single eigenvector at the EPD 

frequency. Upon analyzing the characteristic polynomial, it can 

be proved that besides the two previously mentioned 

conditions, when the two extra conditions 0 2rY Z  , and 

1 3 22 2     for an arbitrary frequency are met, then the two 

eigenvalues (and also the eigenvectors) will be identical at 

every frequency. 

III. CONCLUSION  

We have proved theoretically and showed numerically that 
the periodic TL in Fig. 1 exhibits EPDs. The discrete lossy 
admittance considered in this paper represents the input 
admittance of an antenna, which from the TL point of view acts 
as a loss. We have shown that EPDs occur at frequencies where 
the two TL wavenumbers vanish, leading to possible 
applications of broadside radiation in arrays of antennas with 
elements connected as in the TL in Fig. 1.   Such a phenomenon 
can be used in traveling wave antennas and also in array 
antennas with all elements oscillating and synchronized.  
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Fig. 2. Dispersion diagram of complex wavenumber versus frequency. 

Wavenumber degeneracies are observed at 3 GHz, 6 GHz, etc. where both 
wavenumbers vanish. The two wavenumbers are denoted by different 
colors.  
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