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Abstract—The Proper Orthogonal Decomposition (POD) is
a mode decomposition technique that can be used for the
creation of reduced order models or for analysis of complex
dynamic systems. In this work, we apply the POD to analyze
the characteristics of the oscillations present in an electron beam
with formation of an oscillating virtual cathode.

I. INTRODUCTION

Proper Orthogonal Decomposition (POD) is a model order
reduction technique that extracts the spatiotemporal behavior
from a problem of interest [1]–[5]. This spatiotemporal be-
havior is represented by a set of coupled spatial and temporal
modes [6], [7], which makes POD especially suitable for
analysis and applications in nonlinear dynamic systems. POD
has been used for creation of reduced-order models [8]–[10].
In particular, reference [11] applies POD in the context on
electromagnetic particle-in-cell (PIC) simulations of kinetic
plasmas [12], [13]. Here, POD is explored as an efficient tool
to analyze the characteristics of coherent radiation generated
by an oscillating virtual cathode inside a cavity.

II. PROPER ORTHOGONAL DECOMPOSITION

The POD allows any dynamic function of interest to be
modelled as:

f(x, t) ≈
Nm∑
i=1

σiΨi(x)Φi(t), (1)

where Nm is the total number of POD modes, σi is the modal
amplitude, Ψi are (in general vector-valued) spatial modes and
Φi are (scalar-valued) temporal modes. This representation is
obtained in numerical fashion by arranging sampled data from
f(x, t) (which may come from experimental data or from “full-
order” numerical simulations) in a snapshot matrix [A] such
that its column space spans the spatial variation of the sampled
function and its row space spans the temporal variation, i.e.,
each column of [A] consists of the values of f(x, t) at different
spatial points, at a given time, in the domain of interest. The
snapshot matrix can then be decomposed via singular value
decomposition (SVD) as [A] = [U] · [Σ] · [V]

T . The columns
of [U] provide a basis for the column space of [A], hence
for the spatial distribution of f(x, t), so they are the spatial
modes Ψi. The columns of [V] provide a basis for the row
space of [A], hence for the temporal evolution of f(x, t), so
they are the temporal modes Φi. The singular values are the
spatiotemporal amplitudes σi.

III. VIRTUAL CATHODE FORMATION

Virtual cathode devices are well-known to generate high-
power coherent radiation [14], [15]. As electrons travel inside
a waveguide or cavity, their kinetic energy is transferred into
a space-charge potential. If the electron injection rate is high
enough, this potential increases in magnitude to the point
where a virtual cathode forms inside the beam, i.e. a region of
space with potential equal to or greater than that of the emitting
cathode. This causes electrons inside the beam to be deflected
back towards the direction they were injected from, and can
give rise to oscillations that generate coherent radiation.

IV. APPLICATION AND DISCUSSION

In the example that follows, all data is generated by an
exactly charge-conserving finite-element-based PIC algorithm,
the details of which can be found in [12], [16], [17]. Consider a
two-dimensional square cavity with perfect electric conductor
walls measuring l = 10 [mm]. The cavity is initially without
any particles and with zero electromagnetic fields. We inject
electrons at the bottom wall of the cavity with an initial
velocity of v = ŷ 0.33c, and they are absorbed upon hitting
the upper wall. The injection rate is set such that the electric
current exceeds the space charge limit, causing an oscillating
virtual cathode to emerge. We stress that there are no external
fields or sources in the simulation, in other words the behavior
is entirely driven by the self-interactions of the electrons and
the coupling of the self-fields with the cavity walls.

Fig. 1 shows the average position, along the y axis, of
all particles inside the domain. It can be seen that the beam
initially travels unimpeded but then gets partially reflected and
starts oscillating around the position y0 = 1 [mm]. Note that
this is not the position of the virtual cathode, but rather the
average position of all electrons in the domain, including those
that escape the cathode and continuing flowing towards the
upper boundary of the computational domain (as illustrated in
the inset figure).

Fig. 2 shows the first three spatial electric field modes
obtained from the POD technique in this case. The blue arrows
denote the direction of the electric field, while the background
colormap denotes the normalized field intensity. The first mode
represents the steady beam behavior that is dominant while
the injection current is below the space-charge limit (see [11]
for details). The second and third mode represent coherent
cavity modes generated by the virtual cathode oscillation.
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Fig. 1. Average position, on the y-axis, of all the particles inside the domain.
The beam initially travels unimpeded in the positive direction, but then gets
reflected and starts oscillating around the position y0 = 1 [mm]. The inset
shows the physical configuration of electrons at an arbitrary time; notice how
most of the electrons get stuck in the bottom of the domain due to the virtual
cathode, with the exception of the side streams common in 2D configurations
and a few electrons that stream past the V.C.

(a) First mode. (b) Second mode. (c) Third mode.

Fig. 2. Spatial distributions of the first three electric field modes. The first
mode is a simple straight beam mode reminiscent of when the injected current
is below the space charge limit, while the second and third modes display
cavity configurations induced by the coherent oscillation of the electrons.

Fig. 3 shows the associated temporal modes, multiplied by
their respective modal amplitudes, for comparison. It can be
clearly seen that the temporal mode associated with the first
(steady beam) mode is constant trough time, but the temporal
behavior associated with the second mode is increasing with
time, while the third mode appears as an oscillating correction
to the overall dynamics.

This example showcases how the complex phenomena be-
hind coherent radiation from a virtual cathode can be effi-
ciently decomposed into simple modes by the POD technique.
This allows for a more insighful analysis of the physical
problem by a sparse reduced-order model that still captures the
relevant physics of the problem. Bear in mind that this is not
an actual or optimal device design, but merely an illustrative
example for the POD methodology.
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