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Abstract— In this contribution, we discuss our recent progress in 

the context of devices and metamaterials that break reciprocity 

through the synthesis of momentum bias induced by suitably 

designed spatio-temporal variations. After reviewing our progress 

and latest metrics to realize magnet-free isolators, circulators and 

antennas based on time-varying circuits, we discuss their signal 

transport properties in arrays of these elements, and their 

potential in realizing integrated full-duplex communication 

systems, which have been gaining significant interest recently in 

anticipation of future high-throughput applications that require 

simultaneous transmission and reception on the same frequency. 

I. INTRODUCTION 

Time-reversal symmetry is a fundamental property of several 

physical and engineering systems, which implies that the laws 

governing such systems are invariant if the evolution of time is 

reversed. Breaking this symmetry is essential to realize non-

reciprocal components such as isolators and circulators, with 

several electromagnetic applications. For instance, isolators are 

necessary in optical systems to protect laser sources from 

reflections. Circulators are crucial to enable full-duplex 

communications [1]-[9], which has been gaining interest in 

anticipation of future high-throughput applications that require 

simultaneous transmission and reception on the same frequency 

channel at the same time. Traditionally, non-reciprocity has 

been achieved through magnetic biasing of ferrite materials, 

leading to bulky and expensive devices devices which are 

incompatible with conventional integrated circuit (IC) 

technologies. In order to overcome this problem, magnetless 

implementations of non-reciprocal components have been 

pursued over the past few decades, based on self-biased 

hexaferrites and ferromagnetic nanowires [10]-[15], transistors 

[16]-[20], or parametrically modulated networks [21]-[33]. 

Among these different approaches, linear time-varying circuits 

have shown the utmost promise to satisfy all the necessary 

requirements of practical systems. In this context, several new 

techniques have been proposed based on spatiotemporal 

modulation angular momentum (STM-AM) biasing [21]-[29], 

N-path filtering [30], [31], and transmission line (TL) switching 

[32]. In particular, [21] showed that a cyclic-symmetric 

magnet-free circulator can be realized by coupling three 

resonators and modulating their oscillation frequencies with 

120 deg phase-shifted periodic signals. [23] refined this concept 

further and derived the necessary conditions to achieve optimal 

performance, which resulted in the first Watt-level magnetless 

circulator. Furthermore, [24] developed a differential STM-AM 

circulator that dramatically enhanced the performance of many 

metrics, particularly insertion loss and noise figure which were 

reduced to 0.8 dB and 2.5 dB, respectively, the lowest among 

all magnetless circulators reported to-date. Also, [25] presented 

a broadband circulator with a 20 dB isolation bandwidth (BW) 

of 140 MHz and derived a theoretical bound on such metric. 

These works have been gaining a lot interest in the academic 

and industrial communities and, therefore, were accompanied 

by numerous advances using similar concepts at different 

frequency ranges and even in various physical domains [30]-

[31]. In particular, [30] relied on staggered commutation of N-

path filters to realize a highly miniaturized gyrator, which when 

embedded in a loop of reciprocal phase shifters can yield the 

operation of a circulator. [32] has shown that the gyrator can 

also be built using switched TLs instead, which increases the 

BW and reduces the modulation frequency by a factor of three 

compared to the N-path filter implementation. Similarly, [34], 

[35] relied on switched TLs to realize an ultra-wideband quasi-

circulator. 

Despite the significant improvements introduced in the 

above works, the maximum power handling of all magnetless 

circulators presented to-date is still limited to about 1 Watt. 

Furthermore, the inherent time varying characteristics of these 

circuits result in finite spurs due to mixing between the 

modulation signals and the inputs coming from the TX or the 

ANT ports. These spurs not only pose an interference problem 

to adjacent channels but they also effectively degrade the 

performance of the circulator itself. Specifically, they increase 

the insertion loss because of the power lost in generating them 

and they impose a restriction on the lowest possible modulation 

frequency to avoid aliasing from the image signals around the 

intermodulation (IM) products. [24] presented a partial solution 

to this problem based on connecting two single-ended (SE) 

circulators differentially. Nevertheless, the IM products were 

still limited to –30 dBc in practice because of finite non-

linearities of the used varactors.  

In this talk, we describe our efforts to address these 

challenges by exploring arrays of magnet-less circulators, 

showing how these circuits can improve the overall power 



handling, reduce insertion loss and broaden the bandwidth of 

operation of these devices. We will also provide physical 

insights into the operation of these devices, envision a path 

towards system integration and analyze wave propagation in 

metamaterials based on these elements. 
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