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The remarkable advances in the available computational power over the past
few years, and those anticipated to come, have propelled machine learning
algorithms, some developed decades ago, to the forefront of research interest
in a wide and diverse range of fields: from medicine to autonomous vehicles
and robotics. As the interest in this area deepens, new algorithmic and the-
oretical developments are reported and additional applications are explored.
This trend has been extended to computational science and engineering, with
machine-learning algorithms designed to either improve (D. Ray and J. Hes-
thaven, J. Comput. Phys. 367 (2018), pp 166-191) or even replace (K. Mills
et al., Phys. Rev. A, vol. 96, 2017) existing numerical solvers for linear and
nonlinear problems.

In this work, we follow the former route to explore machine learning algorithms
for numerical dispersion compensation in the Finite-Difference Time-Domain
(FDTD) method. A modular deep neural network (MDNN) is trained with
FDTD simulations of varying cell size, with the goal of “learning” the pattern
of numerical dispersion errors by comparing solutions of various two and three-
dimensional problems at coarse and dense grids. Hence, our training data
include not only a wide collection of geometries, but also meshes of variable
density for each problem. We present a thorough analysis of the structure
of this MDNN and its error performance as a function of training data. We
evaluate its ability to act as a numerical dispersion compensation engine: one
that when fed with the results of a coarse mesh FDTD simulation can predict
the results of an FDTD simulation in a mesh uniformly refined by an integer
factor N .

In terms of training, two approaches are presented and compared: first, a
general purpose one, whereby the network is trained by a large collection
of problems and is asked to produce the FDTD results in a refined mesh
for a problem it has not seen before; second, on-the-fly training where the
coarse and dense simulations are concurrently run for a number of time steps,
until the ANN is trained to use only the coarse FDTD data to predict the
dense FDTD data, for this specific geometry. The comparative presentation
of these approaches enables the illustration of their relative advantages and
disadvantages.
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