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Abstract— In wavelet transform subspace-based optimization 

method (WT-SOM), full natural pixel bases are used to represent 

contrast. In this paper, the performance of representing contrast 

using full natural pixel bases and truncated wavelet bases is 

compared. In our simulations, it is found that using truncated 

wavelet bases for the representation of contrast has similar 

convergence rate compared to using full natural pixel bases. 

Compared to using full natural pixel bases, using truncated 

wavelet bases requires additional discrete wavelet transform to 

be done in each loop. Therefore, representing contrast using 

natural pixel bases is a better choice than using truncated 

wavelet bases. 
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I. INTRODUCTION  

Inverse scattering problems have been widely used in 
different areas, such as detecting defects [1], microwave 
tomography [2].  However, they are difficult to solve due to ill-
conditionness and non-linearity.  

Wavelet bases are popular in solving inverse scattering 
problems since it can decrease the number of unknowns in the 
inverse problem and reconstruct profiles with multiresolution. 
In [1], wavelet bases are used to represent the contrast, the 
computational cost of inversion method can be greatly reduced 
by only using the wavelet bases localized within the area where 
the defects are located. When the background is lossy [3], the 
wavelet bases can be truncated so that the profile can be 
reconstructed with higher resolution in the area where more 
information is collected. Truncated wavelet bases have also 
been used to represent induced current with better performance 
than using natural pixels bases  [4]. In compressive sensing 
(CS), wavelet bases can be used to reconstruct targets which 
are not sparse with respect to natural pixel bases [5, 6]. 

Inspired by the previous works [7, 8], WT-SOM [9] uses 
wavelet bases to represent minor part of induced current. It is 
found that Daubechies 20 wavelet bases and Fourier bases have 
similar compressive property in representing minor part of 
induced current. When a strong scatterer is reconstructed, 
truncated wavelet bases or truncated Fourier bases could be 
used to represent minor part of induced current at the initial 
stage to improve the convergence rate of the inverse algorithm 
[7].  

In this paper, the performance of representing the contrast 
using full natural pixel bases and truncated wavelet bases in 
WT-SOM is compared. It is shown that using truncated D20 
wavelet bases for representation of contrast  has similar 
performance with using full natural pixel bases. Without doing 
additional discrete wavelet transform in each loop, representing 
contrast using natural pixel bases is a better choice than using 
truncated wavelet bases. 

II. FOURMULATION 

In the 2D problems, there are four kinds of wavelet 
coefficients including approximation coefficients, horizontal, 
vertical and diagonal detail coefficients. At the j-level, they are 
calculated as: 
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where f is the function in the spatial domain. V and W are the 

1D scaling signal and wavelet respectively. m and n are the 

indexes of position. 
The corresponding average and detail signals in the spatial 

domain are: 
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The cost function of WT-SOM is: 
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where  
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and  
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The cost function of WT-SOM is similar to the cost function of 
SOM except that α̅pcontains the wavelet coefficients used to 

represent the minor part of the induced current in the pth 
incidence in WT-SOM. W−1  means inverse discrete wavelet 
transform. The cost function is minimized using the conjugate 
gradient method. 

III. NUMERICCAL RESULTS 

In the setup of the simulations, the domain of interests 
(DOI) has a size of  2 × 2 m2   and 64 × 64  pixels after 
discretization. It is centered at the origin point. 32 receiving 
antennas are employed. They uniformly form a circle and are 
all 3 m away from the origin. The frequency of all the 
incidences is equal to 400 MHz. The “Austria” profile with 
relative permittivity equal to 2.3 is used. 10% additive 
Gaussian white noise (AWGN) has been added to the scattered 
fields. Relative error is defined to be the normalized root-
mean-square error (RMSE) between reconstructed and exact 
profiles. 

In the simulations, full bases contain 4096 bases. 256 bases 
which are the second level approximation coefficients are used 
to represent the minor part of the induced current. In the first 
case, the contrast is represented using second level 
approximation coefficients of D20 wavelet. In the second case, 
the contrast is represented using full natural pixel bases. In Fig. 
1, we see the convergence rates of this two cases are almost the 
same. In Fig. 2, it is shown that the reconstructed profiles under 
the two cases after 300 iterations look similar. It might be due 
to the reason that the number of unknowns in contrast is much 
smaller than the number of unknowns in minor part of induced 
current. The number of bases representing contrast may not  
 

 

Fig. 1. Comparison of relative error in the first 300 iterations for different bases 
used to represent the contrast. 

 

Fig. 2.  Reconstructed relative permittivity profiles after 300 iterations using 
(a) truncated wavelet bases (256 bases) in wavelet domain for representation 

of the contrast, (b) full bases (4096 bases) in spatial domain for representation 

of the contrast. 

have much effect on the convergence rate of inverse algorithm 

compared to the number of bases representing minor part of 

induced current. 

IV. CONCLUSION 

In this paper, it is found that using truncated wavelet bases 
has similar convergence rate compared to using full natural 
pixel bases for representation of contrast in WT-SOM. Since 
representing contrast using truncated wavelet bases requires 
additional discrete wavelet transform in each loop, using full 
natural bases is a better choice.  
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