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Abstract—In this paper we propose a scheme to treat, as a
whole, the 6-D reaction integrals appearing in the Method of
Moments. The divergence theorem is twice applied directly in
the physical space domain. The resulting 6-D volume integrals
are expressed as two radial integrals plus four linear integrals
over the source and observation domain boundaries. The method
is numerically validated for static and dynamic kernels arising
in the Electric Field Integral Equation (EFIE), i.e., for kernels
with 1/R singularities, and linear basis functions.

I. INTRODUCTION

Volume integral equation (VIE) techniques based on the
method of moments (MoM) are especially useful in cases
involving inhomogeneous materials either in the direct scat-
tering problem or in the inverse scattering problem, as in
microwave imaging techniques. However, the rigorous solution
of radiation and scattering problems using VIEs requires the
accurate and efficient numerical evaluation of double volume
reaction integrals. Recently, powerful numerical methods for
handling the entire integration of surface integrals on test
and observation element pairs in moment method solutions
have been demonstrated in several papers, e.g. see [1]–[3].
Their approach is based on an interchange of integration
orders to first perform radial integrations for both source and
observation point integrals. However, the approach was limited
to surface elements. In [4] a method allowing an analytical
conversion of expressions for matrix elements of the tensor
and vector Green functions from 6-D volumetric to 4-D surface
integrals with nonsingular integrands was presented.

In this paper we extend the applicability of the method of
[2], [3] to the evaluation of double volumetric integrals on
source and test domains of the 6-D reaction integrals, which
also produces radial source and test integrals. The divergence
theorem is applied directly in the physical domains for both
the source and observation point integrals, and the resulting
radial integrals are well-behaved for polygonal domains. In
this sense, the scheme is quite general, i.e., is not limited to
well-shaped elements nor to ad-hoc treatments of self-, edge-,
or vertex-adjacent geometries. Furthermore, we introduce a
parameterization that will allow us to use the transformations
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of variables implemented in [2], [3] and that have proven their
effectiveness in accelerating the accuracy of the integrals.

II. FORMULATION

We consider first the inner volume integral∫
V ′

F (r, r′)dV ′. (1)

If we can find a vector function H(r, r′) such that ∇′ ·H =
F (r, r′), then by the divergence theorem (1) can be written as∫

V ′

F (r, r′)dV ′ =

∮
S′

H(r, r′S′) · n̂′dS′, (2)

where the volume integral over a tetrahedral element, such as
shown in Fig. 1.a, is reduced to a surface integral over its faces.
r′S′ is a point on the boundary S′ of V ′, n̂′ is the external
normal to the boundary surface of the tetrahedral volume, and

H(r, r′S′) =
R̂′

R2

∫ R

0

F (r, r′)R′
2
dR′, (3)

where r′ = r + R′R̂′, R̂′ = (r′ − r)/R′, 0 ≤ R′ ≤ R ≡
| r− r′S′ |, R′ = |r′ − r| as seen in Fig. 1.a. Using (3) we can
write (2) as∫
V ′

F (r, r′)dV ′ =

∮
S′

(
n̂′ ·R̂′

R2

∫ R

0

F (r, r′)R′
2
dR′

)
dS′. (4)

Next, we consider an additional testing integration over the
planar observer domain S in order to evaluate the following
double surface integral:∫

V

∫
V ′

F (r, r′)dV ′dV =

∮
S′

n̂′ ·

∫
V

(
R̂′

R2

∫ R

0

F (r, r′)R′
2
dR′

)
dV

 dS′, (5)

where the interchange of integration order is permitted by
the independence of the source and observation coordinates
and their associated domains. Again applying the divergence
theorem to the volumetric integral in (5) and rearranging the
order of the resulting integrals, we obtain



Fig. 1. Geometry definitions: a) The orientation of a pair of tetrahedral
elements in space, b) Geometry definitions for integrating over a line segment
pair.

∮
S

∮
S′

(n̂·R̂)(n̂′ ·R̂′)
RSS′

2

∫ RSS′

0

∫ R

0

F (r, r′)R′
2
dR′dRdS′dS, (6)

where S is the boundary of V , n̂ is the outward pointing
normal to S, r = r′S′ +RR̂, R̂ = −R̂′ = (rS − rS′)/RSS′ ,
0 ≤ R ≤ RSS′ , RSS′ = |rS − r′S′ | , and rS is a point
on S. The radial integrals can be performed in closed form
for both the dynamic and static forms of the free space
Greens function G

(
|r− r′|−1

)
and grad

(
|r− r′|−1

)
, with

or without polynomial vector bases. To analyzed the two outer
surface integrals we apply variable transformation for both
surfaces. If we consider

F(r, r′) =
(n̂·R̂)(n̂′ ·R̂′)

RSS′
2

∫ RSS′

0

∫ R

0

F (r, r′)R′
2
dR′dR , (7)

the integral (6) can be written as∫
∆S

∫
∆S′

F(r, r′)dS′dS=

∫
z

∫
ρ

∫
z′

∫
ρ′
F(z, ρ, z′, ρ′)dρ′dz′dρdz, (8)

where the surfaces ∆S and ∆S′ have been parameterized
using the intersection line with orientation (ẑ) between these
surfaces and the vectors ρ̂ and ρ̂′ orthogonal to the intersection
line and the normal to the plane containing the surface ∆S
and ∆S′ respectively (Fig. 1.b). This parameterization will let
us use some of the variable transformations developed in [2].

III. PRELIMINARY NUMERICAL RESULTS

To show the accuracy of the 6-D reaction integral reported
in (6), we examine the scalar potential in the Method of
Moments discretization of the Electric Field Integral Equation
(EFIE). We consider a pair of source and test tetrahedra with
a common edge, as shown in Fig. 2 (inset). An exact result

is used for the radial integrals in Fig. 2, which then compares
the standard Gauss-triangle (GT) quadrature scheme [5] to
a reference result obtained using the GT scheme with the
highest number of points we have available for this scheme
(166 points). In Fig. 2, the convergence of the different sets of
interaction faces is separately investigated. Fig. 2 shows the
number of correct significant digits obtained increasing the
number of surface sample points for the boundary integrals.
The sets of non-touching faces show the best convergence, as
expected, approaching machine precision accuracy with about
16 points per linear dimension.

Fig. 2. Near-field convergence of surface integrals. Inset: Orientation of a
pair of tetrahedral elements in space.

IV. CONCLUSION

The proposed scheme is based on two applications of the
divergence theorem with an appropriate integration reordering
and a variable transformation. The 6-D integrals are expressed
as two radial integrals plus four linear integrals over source and
observation domain boundaries. The method is numerically
validated for static and dynamic kernels arising in the EFIE
and similar formulations. The next step in this research activity
will be to examine the possibility of using other transfor-
mations to further smooth the resulting integrands and hence
accelerate their convergence.
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