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Abstract—The goal of this work is to study the channel capacity
and coherence of communication in wave-chaotic environments,
through the investigation of a physics-oriented statistical wave
model. The objective is attained by cutting across traditional
disciplinary boundaries between electromagnetic theory, wave
chaos physics, random statistical analysis and information theory.
The methodology is to first establish fundamental statistical
representations of complex wave-chaotic media, then integrate
component-specific features of transmitters and receivers, and
finally encode the governing physics into the mathematical
information theory. The theoretical research is evaluated and
validated through representative experiments.

I. INTRODUCTION

Electromagnetic (EM) field theory provides the fundamental
physics of wireless communications. Over the past decades,
EM theory has played a significant role in the design, per-
formance assessment, and deployment planning of wireless
devices and systems. Meanwhile, wireless communications are
taking place in increasingly congested, contested, and com-
petitive environments. Particularly, communication in wave-
chaotic environments is a topic of both fundamental and
practical importance [1]–[3]. Applications include indoor radio
channels, dense urban cells, transmission through diffusive
random media, and disordered media, etc.
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Fig. 1: Multiuser MIMO in rich scattering environments.

A generic problem statement is shown in Figure 1, where
the multiuser multiple-input multiple-output (MIMO) commu-
nication in a confined environment is illustrated. The com-
plexity of the propagation environment and antennas poses
grand challenges in existing semi-empirical statistical channel
models. Among many other issues, we mention effects of
mutual coupling in MIMO antennas [4], correlated random

field in small-scale fading [5], mixed specular direct path and
diffuse multipath, and site-specific, short-orbit coupling.

II. METHODOLOGY

This paper presents an original contribution for analyzing
the physical layer of communication in wave-chaotic envi-
ronments. The proposed statistical model rigorously resolves
the spatial correlation, propagating coherence, and antenna
mutual coupling, from first-principles calculations. The out-
comes achieve an imperative theory-driven, design-under-
chaos capability for optimizing information transmission. The
methodology is described as follows:
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source points are away from the cavity boundary):

r⇥r⇥ E (r, t) + µ0✏0
@2E (r, t)

@t2
= �µ0

@J (r, t)

@t
(15)

The time-varying electric field can be obtained by the Fourier Transform of the time-harmonic
response to J (r0, !). The J (r0, !) satisfies J (r0, !) =
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in order to assure a real-value time-domain current. We have:
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The 3D dyadic Green’s function, G (r, r0, !), in Eq. (16) satisfies the frequency domain 2nd

order vector wave equation:

r⇥r⇥ G (r, r0, !) � !2µ0✏0G (r, r0, !) = I� (r � r0) (17)

Following the same philosophy of the scalar SGF in prior work, the stochastic Green’s function
in the dyadic form can be constructed from the eigenfunction expansion of the wave-chaotic cavity:
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where ⌦ indicates a tensor product. !i is the eigenvalue of the cavity. The ki is the wave
number that is defined by ki = !i

p
(µ0✏0). The  i are the eigenfunctions of the cavity, which

satisfy: r⇥r⇥ i�k2
i i = 0. The ↵ is introduced to accounts for the generic losses for realistic

cavities (dielectric losses, ohmic losses, etc.).
Based on the Berry’s random plane wave hypothesis [67], eigenfunctions of the wave-chaotic

cavity can be locally modeled as an isotropic random superposition of plane waves, expressed by:
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where the direction ên, êm, amplitude ↵n, ↵m, and the phase �n, �m are independent random
variables. In the subsequent derivation, we have applied the central limit theorem, the statistical
ensemble theory, and the conditional probability theory. The details are skipped for the sake of
brevity. The tensor product between  i (r) and  i (r

0) can be written as:
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Fig. 2: Illustration of the modeling methodology.

1) Environmental aspects: Modeling the underlying physics
of propagation is essential to the study of information trans-
mission. It has been discovered that, the ergodic modes in
chaotic environments lead to certain universal, structureless
statistical behavior of EM fields. It motivates the investigation
of the stochastic Green’s Function (SGF) method, which is
an innovative theoretical solution to Maxwell’s Equations in
complex wave-chaotic media. The SGF is constructed from
the eigenfunction expansion with eigenvector statistics derived
from Berry’s random wave model [6] and eigenvalues statis-
tics generated by Wigner’s random matrix theory [7]. The
generic statistical properties of the SGF is characterized by
a few macroscopic parameters, including operating frequency,
coherence bandwidth, and mean eigen-spacing.

2) Antenna aspects: The realistic transmission performance
is also determined by wireless devices and antennas. With the



emergence of the ultra-dense networks and massive MIMO,
there is a pressing need to accuratly characterize the spatial
correlation and interference in wireless channels. To analyze
the mutual coupling among antennas, we use the finite element
method to model the volumetric domain of antennas. The
surface of the antennas is discretized with the SGF-kernel
integral equation (IE) method. The plane wave spectrum corre-
lation among antenna elements is determined by the translation
operator between the eigen-expansion centers.

The outcome provides a statistical ensemble of S-parameter
matrices describing the transmission performance. We can
thereby obtain the random transfer (channel) matrix, evaluate
the channel capacity, optimize the coding and beamforming.

III. EXPERIMENTAL VALIDATION AND VERIFICATION

(i) Uncorrelated MIMO Channel: We begin with analyzing
the ergodic capacity of MIMO channel for different numbers
of well-separated transmitting (Tx) and receiving (Rx) anten-
nas. Since individual antennas are far apart, the SGF will be
dominated by its incoherent, diffuse multipath component. The
resulting channel matrix elements are completely random and
uncorrelated. The computed cumulative distribution function
(CDF) of capacity is plotted in Fig. 3, comparing to the
analytical, i.i.d. Rayleigh fading model. The results verify the
work successfully predicts the performance of uncorrelated
MIMO channels in the multipath chaotic environment.
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Fig. 3: CDF of MIMO capacity at SNR = 10dB.

(ii) Correlated MIMO Channel: We proceed to study the
case of correlated MIMO channel. Shown in Fig. 4(a) is the
reverberation chamber (RC) experiment presented in [8] for
measuring a six-element monopole circular MIMO array. The
monopole array is located on a circular metal plate with radius
0.14m. The spacing between monopole antennas is 0.24λ at
900MHz. Our computational model in Fig. 4(b) only needs
three wall antennas (Tx) and six-element monopole array
on the metal plate (Rx). The spatial multipath propagation
between them is characterized by the SGF - IE method. The
computed channel capacity is compared to the measurement
in Fig. 4(c), where a very good agreement is observed.

IV. CONCLUSION

We present a novel mathematical/statistical model analyzing
the information transmission in multipath, chaotic environ-
ments. It rigorously characterizes the antenna mutual coupling,
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Figure 1. Photo (upper) and illustration (lower) of the reverberation chamber. The photo shows a setup
for measuring radiated power of a mobile phone in talk position relative to a mobile phone. The illustra-
tion shows a setup for measuring a six-element monopole circular MIMO array. The chamber is equipped
with two mechanical plate-shaped stirrers. The six-element monopole array and reference dipole are locat-
ed on a rotatable platform and rotated inside the chamber (platform stirring). The drawing also shows a
head phantom inside the chamber, which is used to load the chamber for more excited mode. The cham-
ber is available from Bluetest AB (http://www.bluetest.se, patent pending).
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Fig. 4: Information capacity of correlated MIMO channel.

and resolves the transmitting, propagation, and receiving cor-
relations in the wave propagation. Such model does not appear
to be available in the literature. The work has diverse applica-
tions to wireless experimentation, time-reversal experiments,
wavefront shaping, and sensing and targeting.
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