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Abstract— Recent developments to the discontinuous Galerkin 

time-domain (DGTD) method for 3-D multiscale problems are 

reported in this paper. Although the DGTD method is very 

popular to electromagnetic problems at present, realistic 

electromagnetic wave propagation problems are often multiscale 

due to complex geometries or heterogeneous media, which leads to 

many restrictions of the traditional DGTD methods. Therefore, 

this paper reports on some significant advances about the DGTD 

method. First of all, in order to overcome the severe stability 

restrictions caused by the locally refined meshes, we propose a 

time integration strategy by combining excellent stability 

properties with a new explicit time scheme. Second, we apply this 

strategy into the inhomogeneous media to solve the multiscale 

dispersive problems. Considering some multiscale meshes with 

very small size, an unconditional stable hybridizable 

discontinuous Galerkin time method is proposed to increase time 

step so that greatly reducing computational time. Particularly, 

from meshes point of view, a new strategy is proposed by 

combining the DGTD with Multiscale Hybrid Method (MHM), 

and the parallel technologies can be greatly performed. By using 

the above methods, accurate numerical results can be obtained as 

well as a higher computational performance in the time-domain 

multiscale problems. 
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time-domain; multiscale problems; dispersive. 

I. INTRODUCTION 

At present, the discontinuous Galerkin time-domain (DGTD) 
[1-2] method is very popular to time-domain electromagnetic 
problems because of its high order accuracy, high parallel 
technology and flexible time iteration schemes. However, 
realistic electromagnetic wave propagation problems are often 
multiscale [3] due to complex geometries or heterogeneous 
media [4]. In fact, there are some locally refined meshes in large-
scale multiscale problems. Since the maximal time step is 
limited by the smallest elements, traditional DGTD methods 
have the huge time consumption and memory usages.  In order 
to avoid effectively these defects, we have carried out following 
research: 

Considering there are huge numbers of meshes in large-scale 
multiscale problems and among them are coarse meshes, which 
is natural to use the explicit time scheme due to element’s 
independence. However, there are still some refined meshes 
with small size resulting in stability constraint on explicit time 
schemes. In order to overcome the stability restrictions,  we 
propose a time integration strategy by combining excellent 

stability properties with a new explicit time scheme. The 
specific ideas are as follows: start from the Lawson method, we 
develop a family of exponential-based time integration methods 
[5] that remove the stiffness on the time explicit integration of 
the semidiscrete operator associated with the fine part of the 
mesh, and allow for the use of high order time explicit scheme 
for the coarse part operator. The developed exponential time 
integration can be time advancing by a variety of explicit time 
stepping schemes; we adopt here a low-storage Runge-Kutta 
(LSRK) [6] scheme. Thus the so-called combined Lawson-
LSRK time integration is constructed. 

On the other hand, inhomogeneous media could bring 
multiscale problems due to taking into account the spatial 
discontinuity and non-uniformity of frequency and collision 
frequency. In order to solve effectively the dispersive problems 
with refined meshes, we introduce the Drude-type [7] based on 
the previous Lawson-LSRK, and develop a high order 
exponential-based time integration by DG schemes with central 
and upwind fluxes. As well as develop it to adapt Perfectly 
Matched Layer (PML) [8] for the open domain problems, this 
time integration has the almost without accuracy loss. As a result, 
this method remains the independence of the explicit time 
schemes and can give rise to a larger time step than existing 
explicit time schemes, which reduces greatly CPU time 
consumption. 

However, it is inevitable to exist some refined meshes that 
have very small size during the large-scale multiscale problems. 
For such meshes, the implicit time scheme [9] has a greater 
advantage because of its unconditional stability compared with 
the explicit time scheme. But, the implicit time scheme needs to 
solve a global linear system. In particular, the coefficient matrix 
may be highly ill-conditioned, which makes it harder when 
dealing with high-order problems. Considering the hybridizable 
discontinuous Galerkin (HDG) frequency-domain method [10] 
has the fewer number of the globally coupled degrees of 
freedom (DOFs) than DG, we develop it into time domain based 
on the implicit time scheme, and form a global system that is 
only related to hybrid variables. Further, by applying the p-type 
multigrid preconditioner to accelerate the solution of global 
system, we can obtain a higher computational performance. 

Finally, we propose a new strategy in the sight of meshes. 
For some large-scale multiscale problems with the complex 
microstructures and heterogeneous geometries, computational 
consumption is very huge[11]. Although there are some 
researches about non-conformal DGTD method [12], they are 
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still preliminary. In order to reduce the cost, we propose the 
DGTD-MHM method by combining the DGTD with the 
multiscale hybrid method (MHM). MHM is a new kind of frame 
of multiscale domain decomposition method [13], which is 
based on a global problem on the boundary of macroscopic 
domain and some independent local problems on the interior 
domains. Once obtaining multiscale basis functions by solving 
the local problems, the global problem can be solved. Since the 
local problems are independent, hybrid mesh technique can be 
used. Besides, the DGTD-MHM is very suitable to implement 
parallel technology, and that’s what we need to do in future. 

The above methods have been applied different kinds of  
multiscale electromagnetic problems. Here we just give some 
numerical results about the scattering of  a plane wave by an 
aircraft with 1430959 tetrahedral meshes. It is clear to see that 

the proposed DGTD-
2

 method based on the combined 

Lawson-LSRK scheme is in good agreement with that of the 
fully explicit LSRK scheme in Figure 1, which further validates 
the numerical accuracy of this new explicit time scheme. And 
from Table I, the proposed method has the 10 times larger time 
step size and yields almost 10 times speed up. Besides, the peak 
memory usage of the proposed method is very low. Therefore, 
we can know that new strategies have the accurate and stable 
solution and a better computational performance compared with 
the traditional DGTD methods, which shows that recent 
developments to the DGTD are very promising for large-scale 
multiscale problems.  

This work is supported by National Natural Science 
Foundation of China (Grant No. 61301054). 
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(b) 

Fig. 1. Scattering of  a plane wave by an aircraft at 600MHz obtained by the 

DGTD-
2
 method based on the combined Lawson-LSRK scheme: (a) a top 

view about the contour lines of the Fourier transform of the electric field. (b) 

time evolution of 
zE  of a given point obtained.  

TABLE I 

 SCATTERING OF A PLANE WAVE BY AN AIRCRAFT: PERFORMANCE FIGURES 

OF THE DGTD-
k

 METHODS BASED ON THE COMBINED LAWSON-LSRK 

SCHEME VERSUS THE FULLY EXPLICIT LSRK SCHEME   

 

k
 

Lawson

LSRK

t

t




 

CPU (h) Peak Mem (GB) 

LSRK Lawson Gain LSRK Lawson 

1
 10 27.7 2.9 9.6 13.4 14.0 

2
 10 82.3 8.5 9.7 55.7 58.7 

 

Note: Table I shows the performance statistics for 1 period by the DGTD-
k
 

methods based on the combined Lawson-LSRK scheme and the fully explicit 
scheme.  
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