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Abstract—A fast approach of populating the near (hy-
per)singular integral interactions in the Magnetic Field Integral
Equation (MFIE) Method of Moments (MoM) on flat triangular
meshes is proposed. Instead of evaluating each near hyper-
singular integral between edge-adjacent triangle pairs via special-
ized integration rules, e.g. singularity subtraction or cancelation,
we propose generating a high dimensional universal library once-
and-for-all, and then using interpolation to evaluate any hyper-
singular interaction encountered on a MoM matrix. The proposed
method is compared to the 1st and 2nd order singularity sub-
traction method for a couple of MFIE MoM models discretized
with Rao-Wilton-Glisson (RWG) basis functions. The proposed
method has comparable accuracy to conventional integration
approaches but at a ten-fold faster computational cost.

I. INTRODUCTION

Integration between flat patches that share an edge or a
vertex in the Boundary Element Method (BEM) solution of the
Magnetic Field Integral Equation (MFIE) is a time consuming
task that has significant accuracy and reliability implications.
Among the most popular methods for evaluating this kind of
quadruple (inner/outer) integrals are the singularity subtraction
[1] and cancellation [2] approaches, where only the inner
integrals are treated using a semi-analytical approach or a
singularity reducing change-of-variables, respectively, leaving
the outer integrals to numerical quadratures. Recently, the di-
rect evaluation method (DEM) [3] uses ideas from singularity
cancellation methods to the full, four dimensional, integral
often leading to faster more reliable convergence. Despite
those significant advances, reaching a reasonably accuracy (3
to 4 digits) remains significantly slower and less reliable than
the respective evaluation of far-field patch interactions.

This paper does not propose another singular integral
evaluation method, but an efficient method using either of
the aforementioned approaches to populate the near-singular
interactions of the BEM impedance matrix. The work will
focus on edge-adjacent near singular interactions as they are
encountered most often and appear to have more prominent
effects on accuracy. For those type of interactions we propose
generating a universal library, that is constructed once-and-
for-all for RWG MFIE BEMs and then use interpolation to
expediently recover on-demand any possible edge-adjacent
near singular integral interaction on the mesh. Because of the
high dimensional nature of integral parametrization, special
sampling and interpolation approaches are used to reduce the
computational burden. In this work a sparse-grid approach is
used for simplicity.
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Fig. 1: Overview of the proposed approach. A mesh (shown on top left
insert) is considered as a collection of parametric edge-adjacent triangles that
are represented as points in a high dimensional parametric space (only 2D
is shown for clarity). This configuration space is mapped into a hypercube
(parallelogram in the 2D case shown here) where each interaction can be
interpolated from a high-dimensional set of pre-sampled points.

II. APPROACH

The singular entries of the RWG-MFIE BEM matrix are
given by:

Zmn(k, T, T
′) =

1

2

∫
T

fm(r) · fn(r) dr2 (1)

−
∫
T

fm(r) · n̂×
∫
T ′
∇gk(r, r′)×fn(r′)dr′2dr2,

where T and T ′ are a pair of edge-adjacent observation and
source triangles, r and r′ are the observation and source
coordinates, fm and fn are the the RWG test and trial basis
functions respectively, and gk the free space Helmholtz equa-
tion Green’s function for wavenumber k. This work will deal
with the more troublesome second term in (1). The key in our
approach is to recognize that integral Zmn(k, T, T

′) in (1) can
be parametrized, and written as a function of frequency, the
subtended angle φ5 between the edge-adjacent triangle pair,
the length of the common edge `0 and the four angles formed
by the common edge and the four other triangle edges denoted



as φ1, φ2, φ3, and φ4, as shown in Fig. 1. If the parametrization
of `0 is with respect to its electrical length φ0, it can be shown
that the integral is independent of frequency, and thus this
parametrization is universal.

The task thus becomes tabulating this universal representa-
tion of the edge-adjacent integrals once-and-for-all in a high-
dimensional “configuration” domain (hyper-prism). A 2 − D
view of this configuration space is shown in the top left
part of Fig. 1, where each point represents an edge-adjacent
integral interaction. This configuration domain is discretized
with hp interpolation elements that could be non-conforming.
To facilitate this process a Duffy transformation, [4]. is used
first to convert the configuration domain into a hyper-cube
as shown at the bottom left side of Fig. 1. In this domain,
edge-adjacent integrals are evaluated at appropriate locations
using a very high order singularity subtraction method of 166
Gaussian quadrature points for all numerical integrals. This
of course, is performed off-line once-and-for-all generating a
library. During runtime this library is accessed and every possi-
ble edge-adjacent interaction in a given mesh can be recovered
by performing a high-dimensional, yet local interpolation. As
will be shown in the results section, this trades some limited
memory for a significant run time improvement.

III. RESULTS AND DISCUSSION

The proposed approach is compared to the first order
singularity subtraction technique, [1] in terms of accuracy and
computational speed. Figs 2 and 3 show the relative error
histograms corresponding to all edge-adjacent near singular
BEM Z matrix entries for a drone aircraft mesh of 53,004
triangles and a fighter jet intake cavity mesh of 26,563
triangles. In both plots blue bars correspond to the proposed
method, while the red correspond to a reasonable (7, 7, 73)
singularity subtraction rules, and green correspond to a very
high-order one (73, 73, 73). Those integration triplets denote
the number of Gaussian quadrature points in the inner and
outer rules of the subtracted term, followed by the outer
quadrature rule of the analytical term. Note that in these
plots the reference results have been obtained by a singularity
subtraction rule of (166, 166, 166). In both cases all methods
show average error of about 2 − 3 decimal digits, while the
maximum error, corresponding to triangles with very poor
quality, can be rather large for all three methods. In the
case of the intake cavity problem the proposed approach has
more interactions with good errors (below 3 decimal digits),
while it also has less interaction with bad error (above 2
decimal digits). Computational statistics for both problems are
summarized in Table I, where a comparison of L2 and L∞
errors and computation time is given. In this table boldface
numbers indicated best performance. This table shows that all
methods are close in accuracy, while the proposed method is
about 10 times faster.
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Fig. 2: Relative error histogram for a fighter jet intake cavity. Comparison of
proposed method with two, 1st order singularity subtraction rules.
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Fig. 3: Relative error histogram for a drone aircraft.

TABLE I: Computational Statistics Summary

mesh Proposed SS 1 SS 2
intake time 56 [s] 551 [s] 1, 835 [s]

N : 26563 L2 8.5 · 10−3 4.8 · 10−3 5.0 · 10−3

f = 8GHz L∞ 9.1 · 100 5.3 · 10−0 5.1 · 10−0

drone time 123 [s] 1, 173 [s] 3, 812 [s]
N : 53004 L2 8.5 · 10−3 5.4 · 10−3 5.2 · 10−3

f = 1GHz L∞ 1.5 · 100 2.4 · 100 2.4 · 100

N : Number of interactions, SS 1,2: singularity subtraction
rule 1, 2, L2 : average error, L∞ : maximum error.
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