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Abstract—Expansions of fields and currents in modes are
classical techniques for analysis of scatterers, antennas, and
cavities. The modes often provide understanding of radiation
properties and resonances. Here, we describe generalized modes
constructed by iteratively solving an optimization problem with
constraints of orthogonality to previous modes. This is used to
construct modes that e.g., have minimum Q-factor or maximal
efficiency. The modes are illustrated for a planar rectangular
shape and compared with characteristic and energy modes.

I. INTRODUCTION

Modes are often used to expand electromagnetic fields and
analyze scattering from spheres, propagation in waveguides,
and cavity resonances. Characteristic modes have features such
as orthogonal far fields and eigenvalues indicating resonan-
ces [1], [2], [3]. Although, these properties are useful for many
problems [4] the orthogonal far field can be a disadvantage in
problems involving near fields or the input impedance.

Here, a few alternative modes as well as a general procedure
to construct modes are described. Energy and efficiency modes
are constructed analogously to the characteristic modes by
interchanging the reactance matrix to stored energy and ohmic
loss matrices, respectively. These modes have orthogonal far
fields similarly to characteristic modes, whereas the eigen-
values indicate normalized stored energy and ohmic losses,
respectively. The orthogonal far fields cause the number of
accurately determined modes to be low [5] and hence makes
it difficult to accurately expand an arbitrary current density
in modes. This cause negligible errors in the radiated field
but the errors in the near fields and input impedance can be
large. In these cases, it can be advantageous to replace the
orthogonal far fields with orthogonal current densities. These
modes are created iteratively by solving the original eigenvalue
or optimization problem [6], [7], [8] for the lowest mode and
removing the subspace associated with this mode. Here, we
use this approach to construct a set of orthogonal current
modes that are self-resonant and has deceasing efficiency.
Numerical examples indicate that the modes can be useful
to synthesize realistic antenna currents and for model order
reduction [9].

II. MATRICES AND QUADRATIC FORMS

A method-of-moments formulation of the electric field
integral equation (EFIE) is used to determine the impedance
matrix [10] Z = R + jX = Rr + RΩ + j(Xm − Xe). The
quadratic forms for the stored magnetic and electric energies

are [11], [12], [13]
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respectively, where ω denotes the angular frequency and I the
column matrix with expansion coefficients [10]. The Q-factor
is determined from stored energies and dissipated power as

Q =
2ωmax {Wm,We}
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where η denotes the radiation efficiency
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Pr the radiated power and PΩ the power dissipated from ohmic
losses [14]. Resistive sheets with surface resistance Rs =
1/(σd), where σ is the conductivity and d the sheet thickness,
are used to model the losses as PΩ ≈ 1

2IHRΩI = Rs

2 IHΨI,
where Ψ has the elements [Ψmn] =

∫
Ω
ψm(r) ·ψn(r) dS .

III. MODE EXPANSIONS

Characteristic, energy, and efficiency modes are constructed
from generalized eigenvalue problems [1] of the form

AIn = λnRrIn, (5)

where we assume symmetry A = AT and positive semi defi-
niteness Rr = RT

r � 0. Characteristic modes are determined
using A = X, energy modes A = Xe + Xm, and efficiency
modes A = RΩ. The modes are orthogonal with respect to A
and R.

Optimal currents can be determined from optimization pro-
blems of e.g., the form [15]

maximize IHRrI

subject to IHXmI = 2P̄w

IHXeI = 2P̄w

IHRΩI ≤ 2P̄Ω.

(6)

These problems are either convex or can be reformulated in
convex form [15]. The solution of (6) gives the optimal value
and a current that reaches this optima. We add a constraint
KpI = 0 to (6) such that the solution is orthogonal to previous
modes. This new optimization problem is reduced to (6) by
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Fig. 1. Efficiencies for the first 15 modes on a planar rectangle for the
characteristic (F , minX), energy (F , minW ) and max η cases. The modes
are orthogonal with respect to radiated far field F and current density J .

elimination of the affine constraint KpI = 0 and can hence
be solved analogously.

The dual of (6) can sometimes be written as a one dimensi-
onal optimization problems involving generalized eigenvalue
problems

λn = max
ν

min
IHnAIm=δmn

IH
nXνIn
IH
nRIn

(7)

with A = R and A = Ψ for orthogonal far fields and
current densities, respectively, where maximum self-resonant
efficiency uses Xν = νX + RΩ. This are easily solve by
iteratively reducing the dimension of the current and matrices.

IV. EXAMPLES

Efficiencies for the first 15 modes are shown in Fig. 1 for a
planar rectangle with side lengths ` and `/2 and electrical size
` = 0.2λ. The characteristic and energy (5) modes have similar
Q-factors are efficiencies for this case. The reduced efficiencies
for the optimized modes are due to the enforced self-resonance
compared with the tuned case for the characteristic and energy
modes [8], [15]. The distribution of the modes are depicted in
Fig. 2.

V. CONCLUSION

Generalized modes that combine optimality and orthogo-
nality are presented. These modes are constructed by solving
a standard optimization problem for some antenna quantity
together with the affine constraint of orthogonality with respect
to the previous modes. The modes can be used as an alternative
to characteristic and energy modes for antennas problems and
particularly for model order reduction.
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Fig. 2. Current density for the first 6 modes of the self-resonant maximum
efficiency modes and orthogonal current densities (J , max η).
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