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Abstract—In this research, a checkerboard metasurface based 
on a novel physical mechanism, optimized multielement phase 
cancellation (OMEPC), is proposed for super-wideband radar 
cross-section (RCS) reduction. Multiple local waves produced by 
the basic meta-particles at multiple frequencies sampled in a 
super-wide frequency band are manipulated and optimized 
simultaneously to achieve super-wideband phase cancellation. The 
proposed metasurface can achieve 10 dB RCS reduction in a 
super-wide frequency band from 5.08 to 27.74 GHz with a ratio 
bandwidth (ࡸࢌ/ࡴࢌ) of 5.5:1.  
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I. INTRODUCTION  

Metamaterial and metasurfaces are artificial structures 
designed for controlling electromagnetic and acoustic waves or 
fields. They exhibit exceptional, unexpected physical 
properties from their chemical constituents [1]. One of the 
potential applications of metasurfaces is to reduce the scattering 
field of a metal object.  

The basic idea is to exploit the cancellation effects arising 
from the well-known 180° phase difference between the 
corresponding reflection coefficients. In 2007, based on a 
combination of artificial magnetic conductors (AMC) and 
perfect electric conductors (PEC) in a chessboard like 
configuration, Paquay et al proposed a planar structure for RCS 
reduction [2]. In [3], a planar monolayer chessboard structure 
is presented for broadband RCS reduction using AMC 
technology. Fractional bandwidth (FBW) of more than 40% is 
obtained with a monostatic RCS reduction larger than 10 dB. In 
2015, Balanis et al proposed a hexagonal checkerboard surface 
of periodic phase arrangement [4], with a 10 dB monostatic 
RCS reduction bandwidth of about 61%. A chessboard AMC 
surface composed of saltire arrow and four-E-shaped unit cells 
has a bandwidth of 85% for 10 dB RCS reduction [5]. Then, the 
dual wideband checkerboard surfaces are presented in [6]; and 
the bandwidths of 10 dB RCS reduction in the frequency bands 
of 3.94–7.40 GHz and 8.41–10.72 GHz is about 61% and 24% 
by utilizing two dual-band electromagnetic bandgap (EBG) 
structures. In 2017, Haji-Ahmadi et al proposed a pixelated 

checkerboard metasurface for ultra-wideband RCS reduction 
[7].  

Previous research focused mainly on the design of unit cells 
with a fixed phase difference of approximately 180° for opposite 
phase cancellation or coding metamaterials. However, 
bandwidth expansion for RCS reduction is extremely difficult. 
Our research is focused primarily on the development of novel phase 
cancellation methods. A metasurface based on the new physical 
mechanism of optimized multielement phase cancellation (OMEPC) 
is proposed for super-wideband RCS reduction. 

II. MULTIELEMENT PHASE CANCELLATION 

For a multi-element checkerboard surface with ܲ	ሺൌ ܯ ∙ ܰሻ 
tiles, the RCS reduction can be derived based on Eq. (5) in [4], 
which can be approximated by 
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The reflection amplitudes are unity ሺܣଵ ൎ ଶܣ ൎ ௉ܣ⋯ ൎ 1ሻ 

due to a lossless ground surface. To achieve a 10 dB RCS 
reduction, the reflection phases of basic meta-particles need to 
satisfy the follow relationship 
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which is a multivariate exponential inequality. It is noted that 

Eq. (2) have many solutions. More basic meta-particles and 
variable phase differences between them greatly increase the 
ability for super-wideband manipulation of EM waves and 
realizing super-wideband phase cancellation. 

III. METASURFACE DESIGN 

A. Unit cell and its reflection characteristics 

The square ring patch was chosen as the basic meta-particle of the 
metasurface for its reflection phase change characteristics. The range 
of reflection phase change with the change of side length is large 
enough in a super-wide frequency band. The unit cells were printed on 
the surface of PTFT Woven Glass substrate with a dielectric constant 
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ݎߝ ൌ 2.65  and loss tangent tan ߜ ൌ 0.001 . The back of the 
substrate is a PEC ground plane. The geometry structure of the basic 
meta-particle is illustrated in Fig. 1 (a). In this simulation, side length 
 of the meta-particles varied from 1.2 to 7.6 mm with a step size of ܮ
0.02 mm, while there were three choices of layer thickness for the 
dielectric substrate: 2 mm, 4 mm, and 6 mm. The periodicity ܽ  of the 
unit cell and the width ݓ  of square ring were fixed. A part of the 
reflection phase curves are plotted in Fig. 1 (b). 
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                           (a)                                                       (b) 
Fig. 1. Geometry of the basic meta-particle and its reflection phase properties. 
(a) Geometry structure of the square ring element. Dimensions are: a=8, w=0.4, 
h=2,4,6 in mm. (b) The reflection phase of basic meta-particles with the change 
of side length ܮ of square rings. 
 

B. Optimization design of basic meta-particles 

The schematic diagram for super-wideband control of RCS 
reduction by adjusting the side length of square ring and the thickness 
of dielectric layer is depicted in Fig. 2, where M is the number of 
optimization frequencies. The main objective of this work was to 
control 16 local waves produced by 16 basic meta-particles to achieve 
phase cancellation for a 10 dB RCS reduction in the super-wide 
frequency band. Particle swarm optimization (PSO) together with Eq. 
(1) was used to optimize the side length L and layer thickness h of 16 
basic meta-particles. In optimization, RCS reduction (σோ) values at M 
optimization frequencies sampled in a super-wide frequency band 
needed to be evaluated.  

 
Fig. 2. Schematic diagram for super-wideband manipulation of RCS reduction 
by geometric parameter adjustment. The side length L and dielectric layer 
thickness h are two adjustable geometric parameters. 

 
The initial side length of the basic meta-particle is a random value 

chosen from a uniform distribution between 1.2 mm and 7.6 mm. 
Layer thickness h is a discrete value chosen from 2 mm, 4 mm, and 6 
mm. When 1000 iterations were finished, we got the optimal 
geometric parameters of 16 basic meta-particles for the metasurface 
with the lowest backward RCS in a desired super-wide frequency 
band.  

The optimized results of side length L and layer thickness h are 
listed in Table I. The predicted RCS reduction is shown in Fig. 3. In a 

super-wide frequency band from 5.08 to 27.74 GHz, the RCS 
reductions are larger than 10 dB. The advantage of this approach is that 
more basic meta-particles and variable phase differences between 
them greatly increase the ability for super-wideband manipulation of 
EM waves and realizing super-wideband phase cancellation.  
 

Table I  
The optimized results of 16 basic meta-particles 

 
 

  
Fig. 3. The monostatic RCS reduction. 

 

IV. CONCLUSION 

A novel checkerboard metasurface based on optimized 
multielement phase cancellation (OMEPC) was designed, 
fabricated, and tested for super-wideband RCS reduction. The 
metasurface can achieve more than 10 dB RCS reduction in a 
super-wide frequency band ranging from 5.5 to 32.3 GHz with 
a ratio bandwidth of 5.87:1 under normal incidence.  
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