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Abstract—A new preconditioning for the electric field integral
equation (EFIE) based on the Calderon formulae is discussed.
Although well-conditioned EFIEs, which do not suffer from
the dense discretisation breakdown, have been widely studied,
many formulations proposed in previous researches require the
implementation of the Buffa-Christiansen (BC) basis functions
or the loop-star decomposition. In this paper, we propose an
implementation of the Calderon preconditioning, which is dis-
cretised with the Rao-Wilton-Glisson (RWG) basis functions and
the piecewise constant functions. We also show that the Calderon
preconditioning implemented in this way also solves the so-called
“low-frequency breakdown”.

I. INTRODUCTION

The EFIE [1], which is one of formulations of integral
equations for solving electromagnetic scattering problems, is
known to have several problems from the numerical point
of view. One of the problems, called “dense discretisation
breakdown”, causes slow convergence when the EFIE is
solved with an iterative linear solver such as the generalised
minimal residual method (GMRES). Many formulations of
well-conditioned EFIEs, which do not suffer from the dense
discretisation breakdown, have been widely studied [2], [3],
[4], [5]. These formulations, however, require the implemen-
tation of the BC basis functions, which are defined on the
barycentric elements having six times more triangular elements
than an original mesh used for discretising the EFIE, or the
implementation of the loop-star decomposition.

Another numerical problem on the EFIE is called “low-
frequency breakdown” [6]. This breakdown causes bad accu-
racy when kh is too small, where k is the wave number and
h is typical size of the mesh. It is widely known that simple
application of the Calderon preconditioning to the EFIE cannot
solve the low-frequency breakdown. Hence many solution
methods for the low-frequency breakdown and combination
of these methods with the well-conditioned EFIE stated above
have been studied.

In this paper, we propose a new preconditioning method for
the EFIE which is based on the Calderon formulae but does
NOT require the use of the barycentric elements and the loop-
star decomposition. We show that the preconditioned electric
field integral operator (EFIO) with the Calderon formulae is
represented by four integral operators, which consists of parts
of the EFIO and the magnetic field integral operator (MFIO)

and can be discretised with the RWG basis functions and
the piecewise constant function. We also note that the well-
conditioned EFIE implemented in this way also solves the
low-frequency breakdown.

II. FORMULATION

We consider a domain Ω occupied by a PEC with smooth
boundary Γ. This PEC is illuminated by an incident wave
(Einc,H inc). In order to solve this problem we consider the
EFIE as follows:

iωµQj = Einc × n, (1)

where j is the unknown electric current on Γ, Q is the EFIO:

Qj := n×
∫

Γ

{
G(x− y) +

1

k2
∇∇G(x− y)

}
j(y)dSy,

k = ω
√
εµ, ε, µ are the permittivity and permeability and G

is the Green function of the Helmholtz equation:

G(x− y) =
eik|x−y|

4π|x− y|
The integral operator Q satisfies the following Calderon’s
formulae:

k2Q2 =
I
4
+ P 2, (2)

where

Pm := n×
∫

Γ
∇G(x− y)×mdSy.

Calderon’s formulae in (2) implies that the integral operator
k2Q2 is “well-conditioned” since P 2 is compact. Hence now,
we multiply the both hand sides of the integral equation in (1)
by −iωεQ and try to discretise k2Q2.

III. DISCRETISATION OF THE SQUARE OF Q

We first decompose Q as

Q = S +
1

k2
N

where

S = n×
∫

Γ
GjdSy, N = n×

∫

Γ
∇∇GjdSy



Then,

k2Q2 = k2(S +
1

k2
N)Q = k2SQ+NS

since N2 = 0. We discretise the two operators k2SQ and NS
in different ways. First, the operator k2SQ can be discretised
with only the RWG basis functions as follows:

k2T−1ST̃−1Q

where

(S)ij := ⟨ti, S(n× tj)⟩L2(Γ), (Q)ij := ⟨n× ti, Qtj⟩L2(Γ),

(T )ij := ⟨ti, tj⟩L2(Γ) = ⟨n× ti,n× tj⟩L2(Γ) =: (T̃ )ij ,

ti is the RWG basis function of ith element and

⟨u, v⟩L2(Γ) =

∫

Γ
ū · vdS

The second operator NS cannot be discretised in a similar
way of the first operator k2SQ since N is a hyper singular
operator. Thus we move one derivative in N to S by taking
integration by parts:

NSj = n×
∫

Γ
∇∇G

{
n×

∫

Γ
GjdS

}
dS

= n×
∫

Γ
∇G

{
∇ · n×

∫

Γ
GjdS

}
dS

= n×
∫

Γ
∇G

{
−n ·

∫

Γ
∇G× jdS

}
dS

= −DM∗

where

Du := n×
∫

Γ
∇xG(x− y)udSy

M∗j := n ·
∫

Γ
∇xG(x− y)× jdSy

Note that M∗ maps a vector-valued function to a scalar
function while D maps a scalar function to a vector-valued
function. The operator −DM∗ can be discretised as follows:

T−1DT−1
c M∗

where

(D)ij = ⟨ti, Dqj⟩L2(Γ), (M∗)ij = ⟨qi,M∗tj⟩L2(Γ),

(Tc)ij = ⟨qi, qj⟩L2(Γ),

and qi is the piecewise constant function defined on ith
element.

IV. NUMERICAL EXAMPLE

We consider a spherical PEC with the radius 0.25 illumi-
nated by a plane wave. We compare the EFIE preconditioned
by the proposed preconditioning method in the previous sec-
tion, the standard Calderon preconditioning, which utilises
the RWG and BC basis functions, and no preconditioning.
The linear equation is solved by the GMRES with the er-
ror tolerance 10−5. Note that, in this example, all matrices

are directly calculated without any fast methods in order
to simplify the implementation. Fig.1 shows the iteration
number of the GMRES for the three kinds of preconditioning.
The iteration number of the proposed method is the least
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Fig. 1. The iteration number of the GMRES.

among the compared three preconditionings for all frequencies
tested in this example. Also, we can see that the proposed
method converges fast even in small frequencies. This is
because N2 = 0 is calculated analytically in the proposed
method while, in the standard Calderon preconditioning, N2

is estimated numerically and it diverges when the frequency
is small.

V. CONCLUSIONS

A Calderon preconditioning for the EFIE without the
barycentric elements was proposed in this paper. By a sim-
ple numerical example, we have verified that the proposed
preconditioning method can efficiently decrease the iteration
number without suffering from the low-frequency breakdown.
Our future plan is to implement a fast method such as the
fast multipole method (FMM) and test the proposed method
in more large problems.
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