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Abstract—With a rapid increase in the number of geostation-
ary satellites around the earth’s orbit, there has been a renewed
interest in using Global Positioning System (GPS) to understand
several phenomenon in earth’s atmosphere. Such study using
GPS devices are popular amongst the remote sensing community,
as they provide several advantages with respect to scalability
and range of applications. In this paper, we discuss how GPS
signals can be used to estimate the amount of water vapor in
the atmosphere. Furthermore, we demonstrate the importance
of such precipitable water vapor (PWV) in the atmosphere for
the task of rainfall detection. We present a detailed analysis in
our dataset of meteorological data of 3 years. Test dataset shows
that use of PWV in rainfall detection helps to reduce the false
alarm rate by almost 12%.

I. INTRODUCTION

Global positioning system satellites are now-a-days exten-
sively used to study the total water content in the atmosphere
(also known as precipitable water vapor) and surface air
temperature [1]. This is important to study as PWV impacts
the hydrological cycle and other weather phenomenon. In
this paper 1, we study the importance of PWV for the task
of rainfall detection. Using a set of weather- and temporal-
parameters, we use a data-centric methodology to establish
this fact.

II. GPS & PRECIPITATION

The amount of precipitable water vapor in the atmosphere
can be estimated from the GPS signal delays [2]. The delay
incurred by the GPS signals is often referred as the zenith
wet delay (ZWD). We calculate the PWV values (measured in
mm), from the ZWD delays via:

PWV =
PI · δLo

w

ρl
, (1)

where δLo
w is ZWD, ρl is the density of liquid water (1000

kg/m3), and PI is a dimensionless constant. We compute this
parameter PI using:

(2)

PI = [−1 · sgn(La) · 1.7

· 10−5|La|hfac − 0.0001] · cos( (DoY − 28)2π

365.25
)

+ [0.165− (1.7 · 10−5)|La|1.65] + f.
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In this equation, La is the latitude, DoY is day-of-year, hfac
is 1.48 for stations from northern- and 1.25 for stations from
southern- hemisphere. The f is computed using f = −2.38 ·
10−6H , where H is the station height. We compute the PWV
values for the IGS GPS station (station ID: NTUS), situated at
Nanyang Technological University (NTU). These PWV values
have a resolution of 5 minutes and have shown to be a good
indicator of rainfall [3]

In our experiments, the meteorological parameters recorded
by Davis Instruments 7440 Weather Vantage Pro II at a
particular rooftop (1.3◦N, 103.68◦E) of NTU building are
used. Different parameters like temperature, relative humidity,
solar irradiance, wind speed, direction and rainfall rate are
recorded. All these weather measurements are recorded at
an interval of 1 minute. In addition to these weather sensor
data, we also collect continuous stream of sky images using
collocated whole sky imagers. These images captured by our
sky camera [4], [5] provide a visual understanding of the
various phenomenon in the earth’s atmosphere. In our previous
work [6], we used such sky camera images to detect the onset
of precipitation.

III. RAINFALL DETECTION

The task of rainfall detection can be modeled as a supervised
learning task, based on a set of features. We use a combination
of weather- and temporal- variables as discriminatory features
of this task. We consider 7 parameters as features – tempera-
ture, dewpoint temperature, relative humidity, solar radiation,
PWV, time of day and day of year. These variables are used as
features for training a Support Vector Machine (SVM) model
in the detection of rainfall.

In our experiments, we consider all the weather observations
for the year of 2010 and 2011 as the data observations for our
SVM model. An independent year of 2012 is used for the
validation set. However, this datasets are highly unbalanced
as the number of rain observations is low, as compared to
no rain observations. Therefore, we employ random down
sampling technique to make the dataset balanced. We employ
a 1:1 ratio for rain to no rain observations. In order to reduce
random sample bias, we perform our experiments for randomly
sampled 100 trials. The average result of these 100 trials are
reported.

For an objective evaluation in understanding the importance
of PWV, we compute two metrics – True Detection (TD)
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TABLE I: Performance of rainfall detection for our SVM-based model. All values are indicated in percentage (%). For the
case where PWV is considered, an increase in performance is indicated by ↑, and a decrease in performance is indicated by ↓.

Without PWV feature With PWV feature
True Detection (TD) False Alarm (FA) True Detection (TD) False Alarm (FA)

Testing data 92.6 44.0 87.4 (↓) 32.2 (↑)
Validation data 88.2 33.6 85.8 (↓) 28.5 (↑)

percentage and False Alarm (FA) percentage. The metrics TD
and FA are defined as:

TD =
TP

TP + FN
(3)

FA =
FP

TN + FP
, (4)

where TP , TN , FP and FN are true positive, true
negative, false positive and false negative respectively, with
respect to rainfall detection task. We consider 20% of the data
in the balanced dataset of 2010 and 2011, as the training set.
The remaining observations are considered as the testing set.
We perform two experiments to prove the importance of PWV
in detecting rainfall. We consider all the 7 considered features,
and compute the TD- and FA- percentage. The results are
evaluated for testing- and validation- dataset. Furthermore, we
consider a 6 dimensional feature vector without considering
the parameter PWV.

The results are reported in Table I. We observe that, if
we consider PWV in our model, the false alarm performance
greatly improves, as compared to the case where PWV is
not considered. The FA decreases by 11.8% for testing data,
and the decreases by 5.1% for the validation set. However,
there is a slight degradation in the performance of true
detection percentage. The TD slightly decreases by 5.2% and
2.4% for the testing- and validation- data respectively. These
experiments are conducted via down-sampling techniques at
20% training dataset.

We also perform experiments with varying percentage of
training dataset. Figure 1 shows the TD and FA percentages for
varying percentage of training dataset. All these observations
are the average of 100 trials, that are randomly chosen from
the dataset. It is clear that the performance of false alarm is
significantly better, when PWV is considered in the model,
for all the varying training size. However, the performance of
the true detection slightly reduces by considering PWV. for
smaller training dataset size. This difference in performance
of TD diminishes for large training dataset size. Furthermore,
we observe an over-saturation effect after 60% of training size
– the TD and FA performances remains the same. This is
because no further discriminatory variability of the dataset gets
incorporated in our model, with the increasing training size.

IV. CONCLUSION & FUTURE WORK

The detection of water vapor content in the atmosphere
is important amongst the remote sensing community to un-
derstand several phenomenon in the earth’s atmosphere. It
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Fig. 1: True detection- and false alarm- percentage of rainfall
recognition for varying percentage of training dataset.

is especially, important for the detection and prediction of
rainfall. In this paper, we have demonstrated the importance of
PWV for the task of precipitation detection. Using a machine-
learning framework, we observed that the false alarm reduces,
when PWV is considered as one of the discriminatory features.
In the future, we also plan to integrate image-based features
extracted from ground-based sky cameras [7] in a multi-modal
fashion, for further improving the current benchmark.

REFERENCES

[1] M. Fujita and T. Sato, “Observed behaviours of precipitable water vapour
and precipitation intensity in response to upper air profiles estimated from
surface air temperature,” Nature Scientific Reports, vol. 7, no. 1, pp. 4233,
2017.

[2] S. Manandhar, Y. H. Lee, Y. S. Meng, and J. T. Ong, “A simplified
model for the retrieval of precipitable water vapor from GPS signal,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 11, pp. 6245–6253, Nov
2017.

[3] S. Manandhar, Y. H. Lee, and S. Dev, “GPS derived PWV for rainfall
monitoring,” in Proc. International Geoscience and Remote Sensing
Symposium (IGARSS), 2016.

[4] S. Dev, F. M. Savoy, Y. H. Lee, and S. Winkler, “WAHRSIS: A low-
cost, high-resolution whole sky imager with near-infrared capabilities,”
in Proc. IS&T/SPIE Infrared Imaging Systems, 2014.

[5] S. Dev, F. M. Savoy, Y. H. Lee, and S. Winkler, “Design of low-
cost, compact and weather-proof whole sky imagers for High-Dynamic-
Range captures,” in Proc. International Geoscience and Remote Sensing
Symposium (IGARSS), 2015, pp. 5359–5362.

[6] S. Dev, S. Manandhar, Y. H. Lee, and S. Winkler, “Detecting rainfall
onset using sky images,” in Proc. TENCON 2016 - 2016 IEEE Region
10 Conference, 2016.

[7] S. Dev, B. Wen, Y. H. Lee, and S. Winkler, “Ground-based image
analysis: A tutorial on machine-learning techniques and applications,”
IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 79–
93, June 2016.

90


