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Abstract—A novel spectral-domain singularity subtraction 

technique for accelerating the convergence of Sommerfeld integral 

tails is proposed for planar stratified media that include a perfect 

electrically conducting layer. Numerical results show that the 

extension avoids catastrophic cancellation in the spatial domain 

between the analytically computed and the numerically integrated 

terms, yields a rapidly decaying spectral tail, and enables accurate 

calculation of the Green’s functions. 
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I. INTRODUCTION  

 Layered medium integral-equation solvers are used in a large 

variety of scattering and radiation problems [1],[2] and many of 

these involve highly conducting layers; e.g., for characterizing 

interconnects in electronic packages [3]. A rigorous technique 

for calculating layered medium Green’s functions (LMGFs) is 

singularity subtraction [4]-[6]. In this approach, the Sommerfeld 

integral tail convergence is accelerated by first subtracting 

asymptotic forms of the spectral-domain LMGF kernels (as 

k  ) from the integrand, numerically computing the 

asymptotically smoothed integral, and then adding the result of 

the numerical integration to the analytical transformation of the 

asymptotic forms in spatial domain. There are various 

shortcomings of this approach; e.g., for thin layers the 

asymptotic forms may not sufficiently increase the convergence 

of the tails until very large k [5] and naïve subtraction in finite-

precision arithmetic can cause significant loss of accuracy [6]. 

 Another important problem with the traditional singularity 

subtraction approach is the catastrophic cancellation in the 

spatial domain between analytically and numerically computed 

terms [7]; an issue that can arise when a perfect electric 

conductor (PEC) is present in the background medium. In the 

conventional singularity subtraction method, the direct term 

from the source to the observer is usually subtracted and 

evaluated analytically using Sommerfeld identity. The strong 

reflection term from the PEC interface vanishes, however, at the 

conventional singularity subtraction limit k   in particular 

polarizations for non-magnetic media; thus it is completely 

numerically integrated. The few accurate significant digits 

computed from the numerical integral are catastrophically 

canceled by the analytically computed term in the spatial 

domain. This article presents a generalized subtraction method 

that can avoid this problem.  

II. FORMULATION 

A. Spatial-domain cancellation 

Consider a non-magnetic layered medium terminated with a 

PEC denoted as layer 1 as in Fig. 1. For example, the vector 

potential component   num ana, ,xx xx xxK z z K K      is 

related to the following spectral-domain Green’s function [1]: 
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Here, n  is the layer number, 0,

h

nZ  is the characteristic 

impedance of layer n  for h  polarization, ,1

h

nR  is the 

transmission-line reflection coefficient looking to the right, i.e., 

upward direction, ,2
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the left, ,3 ,4 ,1 ,2
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conventional singularity subtraction technique only subtracts 

the direct term because ,2 0h

nR   as k  ; causing a 

cancellation problem between the numerical and analytical 

parts for large  . In effect, the fields radiated from the image 

of the source, which are numerically computed; cancel the 

analytically computed fields directly radiated from the source; 

the further away the observer is, the closer the two fields 

become and the more significant digits are lost. 

B. Generalized subtraction 

We observe that the cancellation problem can be avoided by 

subtracting a term
 , , 1

h
z n n s njk z h

e


   
, which can be interpreted as 

a perturbed image source, from the strong reflection term. The 

contribution of this term to the Green’s function can be found 

analytically in the spatial domain via the Sommerfeld identity 

and be added back to the numerical term.  

Consider the subtraction 

 
Fig 1. A PEC terminated non-magnetic stack-up based on [3]. Here, r  

is the complex relative permittivity; the thicknesses of dielectric 1 and 

dielectric 2 are 38.22 μm and 33.65 μm . 
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When 0  , the method reverts to traditional singularity 

subtraction for non-magnetic media; when 1   , an exact 

image is subtracted. In general,  can depend on the parameters 

of the layer ( 1n ) in between the source/observer layer and the 

PEC. When the source and observer are both exactly at the 

interface, i.e., , 0n sz  , a slight z-direction shift 
1nh 
 can be 

used; here, 
1nh 
 is the thickness of the layer 1n  and   is a 

tuning parameter that can be used to match the perturbed image 

source to the strong reflection term as well as to accelerate the 

decaying rate of the spectral integrand. 

III. NUMERICAL RESULTS 

To validate the method, we examine the four-layer non-

magnetic stack of an electronic package (Fig. 1). The source 

and observer are both on the interface between the two 

dielectrics and   apart. The frequency is 20 GHz and the 

wavelength in the dielectric layers is 8.1  mm. As shown in 

Fig. 2, using conventional singularity subtraction with a 310  

numerical Sommerfeld integration threshold, the numerical part 

of 
xxK  approaches its analytical part when  gets large, 

consequently, there is a significant loss of digits in the total xxK

. The proposed method using the same threshold, as shown in 

Fig. 3, avoids the cancellation problem. Fig. 4 shows, when

  , the integrand of direct calculation, singularity 

subtraction, and generalized subtraction when 0.1,  1, 10  . 

As can be seen, direct calculation (without any singularity 

subtraction) suffers from the slow decay of the integrand, 

whereas the generalized subtraction results in fast decaying 

integrands. In fact, a higher threshold can be used and fewer 

digits can be computed in the numerical Sommerfeld integral 

since the cancellation problem is already bypassed by 

subtracting the perturbed image source. This would result in a 

faster convergence of the numerical integral. 
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Fig. 2. The numerical part, analytical part, and the total spatial-domain

xxK  using conventional singularity subtraction. 

 
Fig. 3. The total spatial domain Green’s function calculated using 

conventional singularity subtraction vs. the proposed method with 

different choices of  , here, 1   . 

 
Fig. 4. Sampled spectral integrand of xxK  for direct calculation (no 

singularity subtraction), conventional singularity subtraction, and different 

choices of  ( 1   ). 
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