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Abstract—In this paper a sparsification approach is applied
to the compressed matrix resulting from the Characteristic Basis
Function Method (CBFM) process in order to significantly reduce
the memory cost of this direct solver-based largely used numerical
technique. Many efforts have been made in recent years to
efficiently calculate this matrix but, all of them have focused
on the time cost and have not dealt with the memory resources
needed to store it. With the proposed sparsification approach, the
present work aims to reduce the computational cost associated to
the compressed matrix both in terms of CPU time and memory
consumption.

I. INTRODUCTION

The Characteristic Basis Function Method (CBFM) is a

powerful recent direct solver-based numerical method [1]

designed to solve large-scale electromagnetic (EM) problems,

even with limited computing resources. The CBFM is based

on generating a reduced set of basis functions (CBFs) adapted

to the geometry of the problem of interest, so that the reduced

matrix equation can be handled via a direct method at a

much lower computational cost. So far, The CBFM has shown

good compression performances when applied to a wide range

of large electromagnetic problems (RFICs, Antennas, remote

sensing scattering problems) and achieved a satisfactory level

of accuracy even when applied to complex geometries and

highly heterogeneous simulation scenes [1], [2], [3]. Never-

theless, the CBFM is still intensive particularly in terms of

memory when applied to numerically very large EM prob-

lems. Since direct solver-based, despite the high compression

rate the CBFM achieves, the reduced matrix Zc becomes

untenable both in terms of memory resources and cpu time

when considering numerically very large problems (millions

of unknowns). Several efficient algorithms have been proposed

in recent years to efficiently generate and solve the reduced

matrix Zc, such as the adaptive cross approximation (ACA)

algorithm, the fast multipole method (FMM) and the Sherman-

Morrison Woodbury Formula [2], [4]. However, all of these

approaches were employed only to speed up the calculation

of Zc and have not dealt with the memory resources needed

to store it. To overcome this deficiency, a matrix sparsification

is applied in this paper while generating Zc to reduce the

associated computational cost both in terms of CPU time and

memory consumption.

II. APPLICATION OF THE SPARSIFICATION ALGORITHM

WHILE GENERATING THE REDUCED MATRIX Zc

First, we recall that the CBFM procedure begins by dividing

the 3D geometry of the scatterer into M blocks, such that

the MoM matrix for each block is manageable in size and,

therefore, could be handled by using a direct solver. Then,

a set of Macro-domain Basis Functions (MBFs) is defined

on each block after illuminating it by a sufficient number

of plane waves incident at different angles. Next, a Singular

Value Decomposition (SVD) is applied and a threshold is

used to down-select only a small set of dominant macro basis

functions to represent the unknown field, and be referred to as

the Characteristic Basis Functions (CBFs) for the individual

blocks. These new CBFs are used to construct a final reduced

linear set of equations, as compared to the initial one generated

by using traditional low-level basis functions.

The reduced matrix Zc is generated by applying the

Galerkin’s method to the original matrix ZMoM using as

basis and testing functions the CBFs. The submatrix Zc
i,j “

CpiqtZijCpjq is then an Si ˆ Sj matrix representing the

compressed interactions between blocks i and j [1], [2].

At the end of the process, a direct solver is used to calculate

in total K complex coefficient vector α (K “
řM

i“1
Si). The

total electric field inside the scatterer is then expressed as a

linear combination of the K CBFs weighted by the K thus

obtained complex coefficients α.

Now, even when the CBFM achieves a high compression

rate CR, defined as the ratio between the number of the origi-

nal basis functions and the number of post-CBFM unknowns,

we still need to store and solve a full dense matrix of size

K ˆ K . This can be costly both in terms of CPU time and

memory, particularly if the initial pre-CBFM EM problem

involves several millions of unknowns.

To overcome this limitation, we propose to apply a simple

matrix sparsification on the fly to the submatrices Zc
i,1ďjďM in

order to reduce the total number of non-zero elements of Zc.
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Fig. 1: Snow aggregate divided into 120 blocks

Once Zc is appropriately transformed from a full to a sparse

matrix, a high-performance, robust and memory efficient direct

sparse solver such as the Intel MKL PARDISO is used to

efficiently calculate the final complex coefficients α.

Let us consider Zc
i = Zc

i,1ďjďM the submatrix of Zc of size

SiˆK representing the interactions between block i and all the

other blocks 1 ď j ď M . We first determine the maximum

element in magnitude of Zc
i , then we sparsify it by simply

zeroing out all its sufficiently small elements as follow

ĂZc
i ps, kq “ 0 if |Zc

i ps, kq| ď
max|Zc

i |

tSR

1 ď s ď Si ; 1 ď k ď K

(1)

where tSR is a threshold used to down-select the elements of

Zc
i whose magnitudes are significant compared to max|Zc

i |.
To ensure the accuracy of the approximation, tSR could

be defined through an iterative process until achieving an ǫ

approximation of Zc
i , such that ||Zc

i ´ ĂZc
iptSRq||F ď ǫ where

||.||F is the Frobenius norm and ǫ is the approximation error

selected by the user. If ni significant elements are retained for

each Zc
i , we will need only to store n “

řM

i“1
ni out of the

total K2 elements of the reduced matrix Zc. Therefore. the

gain in memory achieved by the sparsification is calculated

as gp%q “ 100 ˆ pmaxrSiK,ns{K2q, SiK being the size of

each entirely calculated and stored Zc
i .

III. NUMERICAL RESULTS

To check the validity of the proposed sparsification ap-

proach, we calculate the scattering matrix elements for the

snow aggregate in Fig. 1 of maximum dimension dz “ 8.85

mm; effective radius ap “ 1.16 mm and refractive index

m “ 1.8`iˆ13e´4 at f “ 150 GHz (dz “ 7.9 ˆ λs where

λs is the wavelength inside the scatterer). The snow particle

is discretized into 52364 cells and divided into 120 CBFM

blocks. Fig. 2 plots the magnitude of SV V , SHH , SV H and

SHV obtained with a classical full-matrix CBFM, and after

sparsification with tSR = [1e3; 4e3]. With tSR “ 1e3, we

keep 3.94% of the K2 elements of the reduced matrix, which

is not, as can be seen in Fig. 2, sufficient to ensure the accuracy

of the cross-polarization S elements. On the other hand, we

achieve a good level of accuracy with tSR “ 4e3 while storing

only 11.71% of the total Zc of size 7133. Furthermore, the

(a) SV V and SHH

(b) SV H and SHV

Fig. 2: Variations of the scattering matrix elements with a full

Zc CBFM and after sparsification with tSR = [1e3; 4e3].

use of the sparse direct solver PARDISO enables us to reduce

the solving time from 51 to 21 seconds. We expect the gain

in CPU time brought by the use of the sparse direct solver to

increase with the numerical size of the EM problem.

IV. CONCLUSION

The approach proposed in this paper enables to significantly

reduce the computational cost of the storage and resolution

of the compressed matrix Zc while maintaining a satisfactory

level of accuracy, provided that the threshold tSR is adequately

selected. The achieved gain in memory will make it possible

to apply the CBFM to electrically larger EM problems.
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