
Brightness Temperature from Very Lossy Medium 

Zhi-Hong Lai 

Grad. Inst. of Communication Engineering 

National Taiwan University 

Taipei, Taiwan, ROC 

zerox1231@gmail.com 

Jean-Fu Kiang* 

Grad. Inst. of Communication Engineering 

National Taiwan University 

Taipei, Taiwan, ROC 

jfkiang@ntu.edu.tw

 

 
Abstract—The brightness temperature from moistured soil 

with a flat surface is computed by defining near-field bistatic 

transmission coefficients (BTCs) and modifying the Planck's law 

for lossy medium. The efficacy of the proposed methods are 

verified by simulations and comparison with literatures. 
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I. INTRODUCTION 

In microwave passive remote sensing, the brightness 
temperature measured with radiometers is proportional to the 
specific intensity emitted from the ground [1]. In the Soil 
Moisture and Ocean Salinity (SMOS) mission, the brightness 
temperature was measured with an L-band interferometric 
radiometer to estimate the global soil moisture [2]. The Soil 
Moisture Active and Passive (SMAP) mission was conducted 
to collect information on global soil moisture, which 
significantly affects hydrology, meteorology and agriculture 
[3]. In microwave spectrum, the Rayleigh-Jeans approximation 
relates specific intensity to the physical temperature and 
surface emissivity [4]. 

Conventionally, bistatic transmission coefficients (BTCs) 
are the ratio of transmitted specific intensity above ground 
surface to the incident specific intensity just beneath ground 
surface [5]. Conventional BTCs and bistatic scattering 
coefficients (BSCs) are defined in terms of the far fields [1]. 
These coefficients work fine in lossless and low-loss media. In 
a lossy medium, the transmitted far fields approach zero, the 
BTCs thus defined will be zero. 

In this work, near-field BTCs are defined in terms of 
variables right on the surface, and the boundary conditions on 
specific intensities can be expressed in terms of these near-field 
BTCs. The Planck's law is modified by differentiating group 
velocity and phase velocity. The finite-difference time-domain 
(FDTD) method is applied to compute near-field BTCs from a 
very lossy medium with flat surface. In conjunction with the 
modified Planck's law, the brightness temperatures are 
computed and compared with literatures. 

II. NEAR-FIELD BTCS 

 

 

Fig. 1. Scattering of fields from moistured soil in region (1) to air in region 

(0), via a flat surface. 

Fig.1 shows a flat surface between a lossy moistured soil 
and air. The scattering of fields from region (1) to region (0) 
can be characterized by a near-field BTC as  
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where 
0 0

ˆ( )up uK k  (in unit 2Wm ) is called the transmitted 

power strength of p-polarization ( ,p h v ) in the direction 
0

ˆ
uk , 

which is defined in terms of the two-dimensional Fourier 

transforms of the equivalent electric surface currents 
0e uJ  and 

magnetic surface current
0e uM on a Huygens' surface above the 

surface S between regions (0) and (1). 

The conventional BTC from region (1) to region (0) is 

defined as 
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where *

0 0 0 0 0 ' 0 0Re{ }?( ) ( ) ( ) / 2up u up up uI E Hk r r k  is the far-

field transmitted power density at 0 0 0
ˆ

ur k r . If S is a flat 

surface, conventional and the near-field BTCs are related as 
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g x yA L L is 

the surface area in the computational domain. 

III. BOUNDARY CONDITION IN TERMS OF NEAR-FIELD BTCS 

The boundary condition on S can be represented in terms of 
power strengths as 
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which is reduced to the conventional boundary condition in 
terms of specific intensities as 

(0)

0 0 0 1 1

01 (0) 01 (0)

0 1 1 0 ' 0 1 1 ' 1

1ˆcos ( ) cos
4

? ? ?( , ) ( ) ( , ) ( )

u up u u u

pp u u up u pp u u up u

I k d

k k I k k k I k 

 


 

 
 

  

The blackbody radiation intensity was originally derived in 
a lossless medium. The specific intensity is proportional to the 
energy density multiplied by the phase velocity. In a lossy 
medium, the specific intensity should be the energy density 
multiplied by the group velocity, namely, 
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which is the modified Rayleigh-Jeans approximation. If region 
(1) is lossless and S is a flat surface, the boundary condition 
reduces to 
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which is the conventional formula to calculate the brightness 
temperature attributed to region (1). 

IV. SIMULATIONS AND DISCUSSIONS 

In the simulations, the near-field BTCs are computed by 
using the FDTD method with tapered incident fields. Fig.2 
shows the brightness temperatures from a lossy medium with a 
flat surface. The frequency of incident field is 1.4cf   GHz 

(  = 21.43 cm). The dielectric constant in region (1) is 

1 17 2r j   , leading to an effective conductivity of 
1 = 

0.1558 S/m and a skin depth of
1  = 0.0341 m. The effective 

wavelength in region (1) is about '

1 1/ r   = 0.24  . The 

spatial interval in the FDTD scheme is chosen as x  = 0.05 

1  = 0.012   = 0.0026 m. The surface size is chosen as 

8x yL L   . 

 
  

Fig. 2. Brightness temperatures from a lossy medium of 17 2r j   , with 

a flat surface; solid curves: this approach, dashed curves: [6]. 

The errors of brightness temperatures are less than 1 K for 

0 40  and around 5 K at 
0 50  . The predictions with our 

approach agree reasonably well with those in [6]. 

V. CONCLUSION 

In this work, a rigorous new approach is proposed to 
predict the brightness temperatures from a very lossy half 
space, by defining near-field BTCs and modifying the Planck's 
law. Simulation results with the FDTD method have verified 
the efficacy of this approach. 
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