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Abstract—An FFT-based algorithm is presented for rapidly
post-processing the integral-equation based solution of scattering
problems to evaluate the fields at an arbitrary number of nearby
points. The proposed algorithm uses a similar approach to the
adaptive integral method (AIM) but contends with the fact that
the fields are not Galerkin tested with basis functions but instead
point tested. It reduces the computational costs compared to
the brute-force method, especially when the number of observer
points is large.

I. INTRODUCTION

An integral part of any simulation is the calculation of the
desired quantities of interest, which are often different from
the solution quantities (that are output from the solver). While
there have been advances in computational electromagnetics
that have enabled the solution of large scale problems, post-
processing algorithms are frequently overlooked and can even
become more expensive than solving the original problem.
Indeed, a simulator can be considered scalable, only if each
step of it is scalable: setup, solve, and postprocessing [1].

Integral-equation methods are popular for many computati-
onal electromagnetics applications because their formulations
requires the solution of a reduced set of unknowns when com-
pared to the overall domain (i.e., only surfaces have unknowns
for surface integral equation methods). However, multiphysics
simulations may require a quantity of interest over the entire
domain, e.g., to simulate local temperature increase from cell-
phone radiation, the bioheat equation requires the absorbed
power distribution everywhere. Additionally, for visualizing
the fields (e.g., measuring magnetic fields induced by chip
interrogation [2]), the quantities of interest also need to be
calculated over the entire domain. A common quantity of
interest for postprocessing is finding the fields at a set of Nobs

observation points. As shown in the two examples, Nobs can
be much greater than the original set of N unknowns.

For large Nobs, fast near-field evaluation is necessary. This
abstract presents an FFT-based algorithm that is similar to the
steps performed for a single matrix-vector multiplication in
the adaptive integral method (AIM) [3].

II. NEAR-FIELD SCATTERING EVALUATION METHODS

In the method of moments (MoM), the unknown quantity
that is solved for is approximated by a set of unknown
coefficients (I, V) on N sub-domain basis functions (fn) on
the discretized scattering object, i.e.,

J(r′) ≈
N∑
n=1

I[n]fn(r′) and M(r′) ≈
N∑
n=1

V[n]fn(r′), (1)

for electric and magnetic currents, respectively. With
divergence-conforming basis functions (e.g., RWG [4], SWG
[5], and volumetric rooftop [6] functions), the mixed-potential
formulation is used for the relevant integral equations. After
the solution, the now-known set of electric and magnetic
current coefficients can be radiated to find the scattered fields

Esca(r) = −η0L0

(
J(r′), r

)
−K0

(
M(r′), r

)
(2)

Hsca(r) = K0

(
J(r′), r

)
−
L0

(
M(r′), r

)
η0

, (3)

at observation position r, where the L and K operators are

L0

(
v(r′), r

)
= γ0

˚

V

v(r′)g0(d) dV ′

− ∇
γ0

˚

V

(∇′ ·v(r′))g0(d) dV ′ (4)

K0

(
v(r′), r

)
= ∇×

˚

V

v(r′)g0(d) dV ′, (5)

and d = |r−r′|, g0(d) = e−γ0d/4πd is the free-space Green’s
function, γ0 = jω

√
µ0ε0 is the propagation constant, and η0 =√

µ0/ε0 is the free-space impedance. The total electric and
magnetic fields are then found by adding the incident and
scattered fields:

E(r) = Einc(r)+Esca(r) and H(r) = Hinc(r)+Hsca(r). (6)

Note that for r inside or near a basis function, the singularity
in the Green’s function must be treated.

A. Brute-Force Method

To find the fields at a set of Nobs observation points, the
brute-force method is to simply loop over the set of observers
and find the fields radiated by the currents on the N basis
functions. This naı̈ve approach can be represented as a matrix-
vector multiplication:[
−η0Lu −Ku

Ku −Lu/η0

] [
I
V

]
=

[
Esca
u

Hsca
u

]
for u ∈ {x, y, z}, (7)

where Lu and Ku are Nobs ×N matrices whose entries are

Lu[m,n] =
〈
ûδ (r− rm) , L0

(
fn(r′), r

)〉
(8)

Ku[m,n] =
〈
ûδ (r− rm) , K0

(
fn(r′), r

)〉
, (9)

and Esca
u and Hsca

u are Nobs × 1 vectors of the u-component
of the fields at the Nobs observation points. While each entry
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of Lu and Ku must be calculated, they do not need to be
explicitly stored if implemented inside of an observer loop.
The inner product in (8) and (9) indicates non-Galerkin testing
(as opposed to the corresponding MoM matrix entries that do
Galerkin testing). The brute-force method requires O(NNobs)
operations and negligible memory if the matrices are not
explicitly stored.

B. Proposed Fast Method

First, a 3-D regular auxiliary grid of Nc points is created
that encloses all the basis functions and observer points. Using
this grid, the matrix blocks in (7) can be approximated as

Lu ≈ LFFT
u + Lcorr

u and Ku ≈ KFFT
u + Kcorr

u , (10)

whereLFFT
x

LFFT
y

LFFT
z

 = ¯̄Λ†obs

G 0 0 Gx

0 G 0 Gy

0 0 G Gz




Λx

Λy

Λz

Λ∇

 (11)

KFFT
x

KFFT
y

KFFT
z

 = ¯̄Λ†obs

 0 −Gz Gy

Gz 0 −Gx

−Gy Gx 0

Λx

Λy

Λz

 (12)

¯̄Λ†obs =

Λ†obs 0 0

0 Λ†obs 0

0 0 Λ†obs

 . (13)

When multiplied with the current coefficient vectors, the
proposed method does the following: (i) the currents are
anterpolated onto the auxiliary grid via Λ{x,y,z,∇}; (ii) the
sources on the auxiliary grid are radiated via {G,G{x,y,z}},
resulting in fields on the auxiliary grid; (iii) the fields on
the grid are interpolated to the observation points via Λ†obs;
(iv) the fields radiated from nearby currents are corrected via
Lcorr
u and Kcorr

u .
The anterpolation matrices Λ{x,y,z,∇} are sparse Nc × N

matrices whose O(N) nonzero entries are found via moment
matching the {x̂, ŷ, ẑ,∇} · fn components of the n basis
function to sources on the auxiliary grid [3], [7]. These
anterpolation matrices are the same as those used in AIM [8],
[9]. The propagation matrices, {G,G{x,y,z} = ∂{x,y,z}G},
are dense Nc×Nc (three-level) block-Toeplitz matrices. They
are also the same as the propagation matrices used in AIM
with entries G[m,m] = 0 (to avoid the singularity) and
G[m,n] = g0(|rm − rn|) for grid points rm, rn [8], [9].

The interpolation matrix Λ†obs is a sparse Nobs×Nc matrix
whose nonzero entries are found via moment matching a
source at each observer point to sources on the auxiliary grid
[3], [7]. Unlike AIM, the proposed method is not Galerkin
tested; thus, the Λ and Λobs matrices are different.

The correction matrices Lcorr
u and Kcorr

u are sparse matrices
whose nonzero entries occur when observation point rm is
near the support of fn(r′); their entries are given by

Zcorr
u [m,n] = Zu[m,n]−ZFFT

u [m,n] for Z ∈ {L,K}. (14)

The computational costs for the proposed fast method scale
as follows: (i) O(N) operations to anterpolate the current and

O(N + Nc) bytes to store the currents; (ii) O(Nc logNc)
operations to propagate via 3-D FFTs the currents on the
grid to fields on the grid and O(Nc) bytes to store the field
values on the grid; (iii) O(Nobs) operations to interpolate the
fields (when done on the fly inside of an observer loop, the
memory cost is negligible); (iv) O(Nobs) operations to fill and
multiply the correction matrices (again, memory requirements
are negligible when done on the fly). Thus, the proposed
method requires a total of O(N+Nc logNc+Nobs) operations
and O(N +Nc) bytes.

Note that, similar to AIM, Nc can be chosen such that it is
proportional to N for volume integral equation methods and
N1.5 at worst for surface integral equation methods [8], [9].

III. CONCLUSION

Finding the scattered fields at many observation points is
necessary for multiphysics applications (among others) and
may easily become the dominant cost of the overall simulation
if calculated naı̈vely as a postprocessing step following a
fast solution algorithm. This abstract proposes a fast method
that utilizes a regular auxiliary grid and FFTs similar to
the matrix-vector multiplication in the AIM approach. At
the conference, postprocessing results and performance data
comparing brute-force and fast methods will be shown for
large-scale bioelectromagnetic problems.
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