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Fig. 1. A metallic shield with an inhomogeneously filled slot.

Abstract—Extraordinary transmission through a periodic ar-
ray of inhomogeneous dielectric loaded slots in a an infinite
metallic shield of finite thickness is demonstrated. We show that
the intervals between those transmissions can be controlled by
filled slots with inhomogeneous dielectric permittivity.

I. INTRODUCTION

Metasurfaces [1] are well known for their promising ap-
plications. One kind of metasurface consists of a perforated
metallic screen whose hole sizes are small compared to the
free space wavelength. The studies of transmission through a
single slot in an infinite thick metallic shield [2]-[8] reveal
that extraordinary transmission is possible, and the spacing
among those transmissions is controllable by introducing a
region of different dielectric permittivity within a single slot
[9]. As a natural extension of our previous work [10], an array
of inhomogeneous dielectric loaded slots is investigated in
present study, which confirms our expectation that what occurs
for a single slot does so for the array structure as well: the
intervals between extraordinary transmissions in a slot array
can be controlled by introducing a region of different dielectric
permittivity within the slots.

II. DERIVATION

Let an H-polarized electromagnetic wave be obliquely in-
cident at an angle 6 to a periodic array of inhomogeneous
dielectric-loaded slots of width 2b in a perfectly conducting
metallic shield of finite thickness a as shown in Figure 1. Each
slot consists of three layers of different thicknesses, where the
Ist and 3rd layers of thickness a; and as — ay respectively
are filled by a medium with relative permittivity €,1, while
the layer in the middle of thickness as — a; is filled by a
medium with €,5. We assume for simplicity that the gap is
symmetrically located (a3 — as = aj) and that €. > &,0.
We start from an Floquet-mode formulation as used in [10]
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together with a mode-series expansion as used in [9]. The
magnetic field is expressed as:
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where a; is amplitude of incident field, a,, and d,, are Floquet-
Bloch mode amplitudes, o = sinf, v = cosf (0 being the
angle of incidence), k,, = ka—o—?, Ap = VE2— k2, u=y+
b, him = /k%er1 — (51)% gm = /F2er2 — (5)? and A,
B, Cp, Dy, , E,, and F,, are amplitudes of parallel-plate
waveguide mode m in the various regions of the slot, related to
reflection and transmission coefficients at the interfaces. As in
[9], we can obtain A,,, C,,, D,, and F,, in terms of B,, and
Eyn by applying the boundary conditions of continuity of H,
and % 35? (where k = k,/e,) at the interfaces between the
dielectrics within the slot |y| < b at z = —a; and z = —ax.
Next, as in [7]-[8], we apply the boundary condition a;i’ =0
at the surface of the metallic shield and continuity of H, and
L OHs o¢ the slot surfaces (z = 0 and z = —ay). Defining
i xéﬁA;e_"'k“y, A, = k’yA;L, xrf = d, *td, and a,, = a,,
if n # 0 and ay = ag — 2a; if n = 0, we arrive at the integral
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We assume normal incidence (f = 0), and further that
kb\/e, < 7; the latter condition ensures that all other modes
will be evanescent except m =0 (TEM mode). We extract the
TEM mode (m = 0) terms in (2) and get a degenerate-kernel

integral equation whose solution is:
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For kd < 2m, Too = (25) 4+ 4 [Cl4(0) — Cly (27)]

where Cls is third-order Clausen function [11]. From (3), we
can determine the magnitude of the plane-wave transmission
coefficient:

Hzt(y7 Z) 2b

III. RESULTS
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Extraordinary transmisssion through both a single and an
array of dielectric-loaded slots in thick metallic shield has been
studied previously [7]-[10]. It has been shown [9] that a region
of different dielectric permittivity introduced within a single
slot will control the intervals between resonances, a result we
now extend to the slot array. A comparison among results of
the inhomogeneous (gap) formula (4), the homogeneous slot
(no gap) formula from [10] and a full wave HFSS simulation
is shown in Figure 2. The effect of slot inhomogeneity for
an array is similar to that of a single slot [9],—introducing
a gap within the slots shifts the even-order resonances to
higher frequencies while keeping odd-order resonances almost
unchanged. Increasing the size of the gap will shift the even
order resonances to progressively higher frequencies until they
meet the next odd-order resonances, which will be shifted to
higher frequencies but at a rate much slower than for the even
order resonances, eventually forming new resonances which
will keep moving to higher frequencies as the size of the gap
is increased.
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Fig. 2. Transmission Factor T'F' of homogeneous and inhomogeneous

symmetrically filled (a3 —a2 = a1) slots: ag = 4 mm, b = 1 mm, £,;7 = 50,
er2 = 1 (air) and gap= 1 mm.
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