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Fig. 1. A metallic shield with an inhomogeneously filled slot.

Abstract—Extraordinary transmission through a periodic ar-
ray of inhomogeneous dielectric loaded slots in a an infinite
metallic shield of finite thickness is demonstrated. We show that
the intervals between those transmissions can be controlled by
filled slots with inhomogeneous dielectric permittivity.

I. INTRODUCTION

Metasurfaces [1] are well known for their promising ap-
plications. One kind of metasurface consists of a perforated
metallic screen whose hole sizes are small compared to the
free space wavelength. The studies of transmission through a
single slot in an infinite thick metallic shield [2]-[8] reveal
that extraordinary transmission is possible, and the spacing
among those transmissions is controllable by introducing a
region of different dielectric permittivity within a single slot
[9]. As a natural extension of our previous work [10], an array
of inhomogeneous dielectric loaded slots is investigated in
present study, which confirms our expectation that what occurs
for a single slot does so for the array structure as well: the
intervals between extraordinary transmissions in a slot array
can be controlled by introducing a region of different dielectric
permittivity within the slots.

II. DERIVATION

Let an H-polarized electromagnetic wave be obliquely in-
cident at an angle θ to a periodic array of inhomogeneous
dielectric-loaded slots of width 2b in a perfectly conducting
metallic shield of finite thickness a as shown in Figure 1. Each
slot consists of three layers of different thicknesses, where the
1st and 3rd layers of thickness a1 and a3 − a2 respectively
are filled by a medium with relative permittivity εr1, while
the layer in the middle of thickness a2 − a1 is filled by a
medium with εr2. We assume for simplicity that the gap is
symmetrically located (a3 − a2 = a1) and that εr1 > εr2.
We start from an Floquet-mode formulation as used in [10]

together with a mode-series expansion as used in [9]. The
magnetic field is expressed as:

Hx(y, z) =

aie
−ik(αy−γz) +

∞∑
n=−∞

ane
−i(kny+Λnz),

(z > 0)
∞∑
m=0

[Ame
−ihm(z+a1) +Bme

ihmz] cos
πmu

2b
,

(−a1 < z < 0)
∞∑
m=0

[Cme
−igm(z+a2) +Dme

igm(z+a1)] cos
πmu

2b
,

(−a2 < z < −a1)
∞∑
m=0

[Eme
−ihm(z+a3) + Fme

ihm(z+a2)] cos
πmu

2b
,

(−a3 < z < −a2)
∞∑

n=−∞

dne
−i(kny−Λn(z+a)), (z < −a3)

(1)

where ai is amplitude of incident field, an and dn are Floquet-
Bloch mode amplitudes, α = sin θ, γ = cos θ (θ being the
angle of incidence), kn = kα+ 2πn

d , Λn =
√
k2 − k2

n, u = y+
b, hm =

√
k2εr1 − (πm2b )2, gm =

√
k2εr2 − (πm2b )2 and Am,

Bm, Cm, Dm , Em and Fm are amplitudes of parallel-plate
waveguide mode m in the various regions of the slot, related to
reflection and transmission coefficients at the interfaces. As in
[9], we can obtain Am, Cm, Dm and Fm in terms of Bm and
Em by applying the boundary conditions of continuity of Hx

and 1
k̃2

∂Hx

∂z (where k̃ = k
√
εr) at the interfaces between the

dielectrics within the slot |y| < b at z = −a1 and z = −a2.
Next, as in [7]-[8], we apply the boundary condition ∂Hx

∂z = 0
at the surface of the metallic shield and continuity of Hx and
1
k̃2

∂Hx

∂z at the slot surfaces (z = 0 and z = −a1). Defining
x̃±q = x±q Λ

′

qe
−ikαy , Λn = kγΛ

′

n, x±n = ãn±dn and ãn = an
if n 6= 0 and ã0 = a0− 2ai if n = 0, we arrive at the integral
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equations:

x̃±n =
16πkαb3

kγεrd2
n

∞∑
m=0

hmΓ∓m
Γ±m(1 + δ0m)

Gm

(
2πbn

d

)
Gm(kbα)

+
8πb3neikαy

kγεrd2

∞∑
m=0

hmΓ∓mGm
(

2πbn
d

)
Γ±m(1 + δ0m)

∞∑
q=−∞

x̃±q
Λ′q

kqGm(kqb)

(2)

where

Gm(x) =
sin(x− πm

2 )

(x)2 − (πm2 )2
, Γ±m =

Γ±2m
Γ±1m

Γ±1m = e−i2hma1

T1+T2
± 1∓ T3e

−i2hma1

T1+T2
, Γ±2m = e−i2hma1

T1+T2
∓ 1∓ T3e

−i2hma1

T1+T2

T1m = cos gm(a2−a1), T2m = i
2

[
tm + 1

tm

]
sin gm(a2−a1)

T3m = i
2

[
tm − 1

tm

]
sin gm(a2 − a1), t = gmεr1

hmεr2
.

We assume normal incidence (θ = 0), and further that
kb
√
εr <

π
2 ; the latter condition ensures that all other modes

will be evanescent except m =0 (TEM mode). We extract the
TEM mode (m = 0) terms in (2) and get a degenerate-kernel
integral equation whose solution is:

x̃±n =
4b

d
√
εr1

sinc

(
2πbn

d

)
N± (3)

where

N± =

Γ∓0
Γ±0

1− d
2π2b

√
εr1

Γ∓0
Γ±0
I00

For kd � 2π, I00 =
(

2bπ
d

)2
+ jkd

2π

[
Cl3(0)− Cl3

(
2bπ
d

)]
where Cl3 is third-order Clausen function [11]. From (3), we
can determine the magnitude of the plane-wave transmission
coefficient:

|S12| =
∣∣∣∣Hxt(y, z)

Hxi(y, z)

∣∣∣∣ =

∣∣∣∣ 2b

d
√
εr

[N+ −N−]

∣∣∣∣ (4)

III. RESULTS

Extraordinary transmisssion through both a single and an
array of dielectric-loaded slots in thick metallic shield has been
studied previously [7]-[10]. It has been shown [9] that a region
of different dielectric permittivity introduced within a single
slot will control the intervals between resonances, a result we
now extend to the slot array. A comparison among results of
the inhomogeneous (gap) formula (4), the homogeneous slot
(no gap) formula from [10] and a full wave HFSS simulation
is shown in Figure 2. The effect of slot inhomogeneity for
an array is similar to that of a single slot [9],—introducing
a gap within the slots shifts the even-order resonances to
higher frequencies while keeping odd-order resonances almost
unchanged. Increasing the size of the gap will shift the even
order resonances to progressively higher frequencies until they
meet the next odd-order resonances, which will be shifted to
higher frequencies but at a rate much slower than for the even
order resonances, eventually forming new resonances which
will keep moving to higher frequencies as the size of the gap
is increased.
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Fig. 2. Transmission Factor TF of homogeneous and inhomogeneous
symmetrically filled (a3−a2 = a1) slots: a3 = 4 mm, b = 1 mm, εr1 = 50,
εr2 = 1 (air) and gap= 1 mm.
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