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Abstract—A waveform design procedure for improving the
estimation of Doppler frequencies in active remote sensing
applications is presented. The bound on frequency estimation
is analyzed in terms of a continuous waveform, and the optimal
waveform is inferred. Several waveform designs are analyzed,
showing that a near-optimal dual-pulse waveform can achieve
greater estimation accuracy than a single-pulse waveform using
the same signal energy.

1. INTRODUCTION

Accurate estimation of the Doppler frequency shift of a
received signal is critically important in many remote sensing
applications, including radar target tracking [1], synthetic aper-
ture radar [2], underwater sonar [3], and medical ultrasound
[4], among others. While the bounds on the ability to estimate
the frequency of a signal are well-known, the efforts to
improve the Doppler estimation accuracy of a measurement
almost universally focus on the use of uniform-amplitude
signals and analysis of the received signal properties [S]-[8].
Significant accuracy improvements can be achieved with such
post-processing of the received signal, however this approach
does not take into account the ability to design the transmitted
waveform to achieve improved estimation accuracy.

In this work, we demonstrate a method of achieving impro-
ved Doppler frequency estimation by designing the transmitted
signal waveform. By analyzing the properties of the continu-
ous form of the lower bound on estimation accuracy, important
insights into the design of the waveform can be gained; in
particular, a dual-pulse waveform achieves greater frequency
estimation performance relative to a uniform pulse of the
same duration and energy. We further note that this approach
is generally independent of other estimation improvement
techniques such as post processing; thus, most techniques for
accuracy improvements (e.g. [9], [10]) may still be applied for
further improve the accuracy.

II. ACCURACY OF DOPPLER FREQUENCY ESTIMATION

A narrowband radar signal scattered off a point target that
is moving radially relative to the radar can be modeled with
as a signal with frequency shift proportional to the relative
velocity. For a radially inbound object with velocity v < ¢,
the received signal can be modeled by

ey

where ¢(t) is the transmitted signal, to is the delay due to
propagation, f; = 2/ <2 is the Doppler frequency shift, f. is
the RF center frequency of the signal, the term « includes all
the constant terms, and w(t) is a white Gaussian noise term.

The ability to measure the radial velocity is limited by the

5p.(t) = ag(t — to)e??™at L w(t)
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variance on the estimate of the frequency of (1). This variance
is given for most narrowband signals by [11]

var(fq — fa) > 2
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is the mean-square time duration of the signal.

As indicated by (2) and (3), the accuracy of the Doppler
frequency estimate is inversely proportional to the mean-
square time duration, which is the second moment of the
temporal signal. In comparison, Doppler resolution is inversely
proportional to the radar signal temporal duration (e.g. [12]).
Thus, to achieve the greatest Doppler accuracy, it is desirable
to maximize the mean-square time duration of the signal,
which is not equivalent to simply maximizing the temporal
duration of the signal.

III. OPTIMAL WAVEFORM DESIGN

Maximizing the the mean-square duration of the signal is
equivalent to maximizing the temporal second moment as
indicated by (3). For a given time duration T, the signal
is maximized when all the energy is concentrated into two
separate pulses of infinitesimal width. Mathematically, this can
be given by

go(t) = }%g(fcat)H(t7T7T) (4)

where

g(fort) = Aei2mfet+o(t) 5)

is the base waveform with amplitude A, carrier frequency f.,
¢(t) is any phase modulation, and

HtT,7) = % h(t) — h(t — 1) + h(t— T+ 7) — h(t — T)].

(6)
In the limit as 7 — 0, the two pulses become narrower, with
the amplitude increasing (A/7). Thus, the overall signal energy
is preserved.

The optimal waveform consists of two infinitesimally short
pulses of infinite amplitude however in practice the two pulses
will have finite width 7 and amplitude A/7. In this section we
analyze the relative performance of the waveform as a function
of 7 to determine the limits of a near-optimal waveform with
finite parameters. The waveform was simulated with f. =
1 GHz, T = 10 us, and signal energy E, = 1, which was
consistent for all variations of 7. The waveform was analyzed
for values of 7/T = 1, 0.5, 0.1, and 0.02. To include some
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Fig. 1. Four different waveforms of progressively increasing second moment.
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Fig. 2. Frequency domain of the four signals.

effects of the received system responses, the signals were
filtered around f. using a bandpass 3-pole Chebychev filter
with a 200 MHz bandwidth. Fig. 1 shows the time-domain
responses of the four waveforms with a 30 dB signal-to-noise
ratio, showing clearly that as 7 is decreased, the signal energy
becomes compressed into the ends of the waveform, thereby
increasing the second moment of the signal. The Fourier
transform of the four 30 dB SNR signals is shown in Fig.
2. The frequency-domain response of the waveform becomes
progressively narrower as 7 decreases, thereby improving
the frequency estimation. It can also be seen, however, that
frequency ambiguities become more prominent as 7 decreases;
this represents an area where frequency disambiguation must
be addressed. The estimation bounds for the waveforms are
plotted in Fig. 3, showing the clear improvement of the near-
optimal waveforms. Also shown for reference is the 3 dB
resolution of the waveforms, which is only determined by the
signal duration T and is consistent for all waveforms. The
Doppler estimation accuracy improves as 7 decreases, however
the figures above show that up to a certain point the relative
gains in estimation accuracy become limited. In particular, the
differences in accuracy between 7/T = 1 and 7/T = 0.5, and
that between 7/T = 0.5 and 7/T = 0.1 are significantly greater
than that between 7/T = 0.1 and 7/T = 0.02. After a minimum
7/T = 0.1, the improvements minimally increase.
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Fig. 3. Lower bounds on accuracy as a function of signal-to-noise ratio (SNR).

IV. CONCLUSION

By designing the transmit waveform, the Doppler frequency
estimation accuracy can be improved over a simple uniform-
amplitude waveform. In the limit, the optimal waveform con-
sists of two temporal impulse signals; however in practice the
best waveform may be a near-optimal design using 7/T = 0.1.
In particular, reducing 7 and increasing the pulse amplitudes
will have implications on the transmitter and receiver hardware
(e.g. for bandwidth and peak power handling) that must also be
considered. Frequency ambiguities in near-optimal waveforms
must also be addressed to ensure precise and accurate Doppler
frequency measurement.
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