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Abstract—The traditional O(f6) computational time scaling
when using Method of Moments for monostatic Radar Cross
Section calculations is circumvented by applying the Multi-Level
Fast Multipole Method (MLFMM) along with a number of
modifications. The performance of the modified MLFMM-based
algorithm is illustrated through a numerical example.

I. INTRODUCTION

The computation of the monostatic Radar Cross Section
(RCS) is an important task in many engineering applications.
The computation time for full-wave methods, such as Method
of Moments (MoM), scales as O(f6), f being the frequency,
and such methods have therefore traditionally been considered
too computationally demanding. For the current state-of-the-
art RCS prediction tools, the poor frequency scaling has
resulted in algorithms [1], [2] that either relax the accuracy
requirements by using asymptotic methods or, for implementa-
tions using full-wave methods, require extreme runtimes even
on very advanced and expensive computing platforms [3].

The computational scaling reduces to O(C(f, P )f2 log f)
by applying the Multi-Level Fast Multipole Method
(MLFMM), where C(f, P ) is the number of iterations re-
quired for convergence of an iterative solver, and P is the
number of incidence angles. Despite this significant reduction
in computing resources, most state-of-the-art full-wave RCS
solvers avoid the use of MLFMM and instead prefer MoM,
primarily since the number of iterations C(f, P ) can be very
large due to a high number of incidence angles.

Here we present a range of developments towards an
efficient algorithm for large-scale full-wave monostatic RCS,
particularly for scatterers that are too large to handle with
direct MoM. The algorithm includes a discretization based
on higher-order basis functions and curved quadrilaterals,
an MLFMM implementation aimed at keeping the memory
requirements low, and a number of techniques reducing the
total number of matrix-vector products needed for computing
the RCS for many incidence angles.

II. MONOSTATIC RADAR CROSS SECTION

The monostatic ψ̂-polarized RCS, σψν(θi, φi), for a ν̂-
polarized incident field of a structure in the direction (θi, φi),
is defined as

σψν(θi, φi) = lim
r→∞

4πr2
|ES(θi, φi) · ψ̂|2

|EI
ν̂(θi, φi)|2

, (1)

whereEI
ν̂(θi, φi) denotes the electric field due to a ν-polarized

plane-wave and propagation vector k̂ = −(sin θi cosφix̂ +

sin θi sinφiŷ+ cos θiẑ), k is the free-space wavenumber, and
ES(θi, φi) is the scattered far field.

III. SOLVING THE INTEGRAL EQUATION

For the considered perfectly electrically conducting scatter-
ers, the mixed potential Electric Field Integral Equation (EFIE)
– or the Combined Field Integral Equation (CFIE) for closed
structures – is discretized using a higher-order approach. The
surface geometry as well as the unknown surface current
density are expanded using higher-order polynomials [4].
With this higher-order discretization, rather than one based
on lower-order functions such as RWGs [5], the number of
unknowns N required for obtaining a specific accuracy is
significantly reduced.

A. Multi-Level Fast Multipole Method

To avoid the N3(f6) term in the asymptotic scaling
of MoM, the MLFMM can be used to perform the in-
volved matrix-vector multiplications in O(N logN) time and
memory. Combining this with an iterative solver such as
GMRES allows us to solve the MoM matrix equation in
O(C(f, P )N logN) operations. While the standard MLFMM
for RWG basis functions is well studied, it is not straight-
forward to adapt MLFMM to a higher-order discretization.
However, within the last couple of years, an efficient HO-
MLFMM formulation has been developed [6], demonstrating
significantly better performance than standard MLFMM and
being very suitable for standard computer hardware.

IV. USING MLFMM FOR MONOSTATIC RCS

The MLFMM clearly reduces the memory footprint, but it is
not clear that there is a reduction in runtime, since we have not
yet quantified the number of iterations C(f, P ). Indeed, com-
paring our implementation to MoM-based RCS solvers such
as [3], we clearly see that while MoM implementations focus
on minimizing the number of unknowns N , our MLFMM
implementation should focus on minimizing the number of
iterations C(f, P ).

To quantify the number of iterations C(f, P ) if the angular
range is φint, we first consider the dependence of P on f by
considering the angular sampling density [7]

P =
φint

∆φ
=

4fρmaxφint

c0
(2)

where c0 is the speed of light and ρmax is the maximum object
radius in the observation plane. We note that P is the number



of right-hand sides for each of the two polarizations of the
incident plane wave, thus the total number of right-hand sides
will be 2P . Thus, we can express C(f, P ) as

C(f, P ) = 2NitP, (3)

where Nit is the number of iterations required for the iterative
solver to converge for each of the 2P right-hand sides.

A. Interpolating the monostatic RCS

Usually, a larger number of incidence angles Pu are needed
than required by the sampling criterion (2), and the monostatic
RCS can then be interpolated by one of the many well-
studied methods for interpolation of functions on a sphere.
When Pu > P it is computationally much more efficient to
solve the MoM matrix equation with P right-hand sides and
subsequently interpolate rather than solving it directly with Pu
right-hand sides.

B. Iterative Solver

The most popular iterative solver for MLFMM problems
appears to be the GMRES [8], which in its basic formulation
is a Krylov method based on a single right-hand side. Hence,
a standard textbook RCS implementation does not utilize the
fact that the P right-hand sides are related. To improve on this,
we have implemented a Block-GMRES solver as discussed
in [9], which minimizes all P residuals simultaneously. A
Block-Krylov solver provides a lower number of matrix-vector
products than the NitP estimate given in (3) by utilizing
information from all the P right-hand sides. In addition, our
implementation employs deflation, which reduces the dimen-
sion of the Krylov subspace from P columns to Pd columns by
applying a rank-revealing decomposition to the orthogonalized
residual space.

V. NUMERICAL RESULT

The monostatic RCS is calculated for an F16 fighter at 3
GHz using CFIE. Pu = 1800 incidence angles are desired and
the number of right-hand sides after deflation is Pd = 763 per
polarization. The applied quadrilateral mesh is seen in Fig. 1.
The simulation requires 301681 unknowns, 14 GB storage,
and 11 iterations and 10.2 hours to converge on a Dual Intel
Xeon E5-2690 2.6 GHz computer with a total of 24 cores.
No symmetry assumptions are used in the simulation and the
result is shown in Fig. 2. For comparison the RCS of the
same fighter at the same frequency is performed in [3] using
a direct MoM solution on an Intel Xeon E5-2660 2.2 GHz
with 20 cores, 3 GPU cards, and 4 SSD disks. The simulation
time is 9.8 hours and symmetry is used to half the number of
unknowns to 160411. With the use of symmetry the storage
requirement of the MoM-based solution is at least 96 GB. For
non-symmetric configurations the required storage is at least
384 GB.
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Fig. 1. The higher-order quadrilateral mesh of the F16 fighter.
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Fig. 2. F16 monostatic RCS in dB at 3 GHz in the observation plane in
which the plane of the tail is contained. 0◦ is the front and 180◦ the rear of
the fighter.
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