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Abstract—This paper presents a fast back projection algorithm
for circular synthetic aperture radar (CSAR) imaging. With the
help of geometry analysis, the algorithm converts the circular
aperture data into subimages. And a special polar coordinates
system is adopted in the subimage fusion to make the whole
process more efficient. Comparing with the direct back projection
method, the proposed one improves the computational efficiency
significantly. Experimental results demonstrate the accuracy and
effectiveness of the algorithm.

I. INTRODUCTION

Circular synthetic aperture radar (CSAR) is an important
earth observation tool with its capability of multi-aspect obser-
vation, high resolution and 3D imaging [1]. Different from the
conventional straight line SAR imaging, CSAR travels along
a circular trajectory in a certain height plane. However, the
circular track also brings challenges to the imaging. The clas-
sical frequency-domain based algorithms, e.g., range-doppler
algorithm (RDA), chirp scaling algorithm (CSA) and polar
format algorithm (PFA) cannot be directly employed into the
CSAR processing. Soumekh gives a wavefront reconstruction
method based on the Fourier decompositon of the Green’s
function [1], but it is hard to expand its application and
exploit the motion compensation method. Back projection
(BP) algorithm [2] seems to be a good approach for arbitrary
geometry SAR imaging, whereas the big computational burden
makes this approach too time consuming.

Fast factorized back projection (FFBP) algorithm [3] is a
fast time domain approach that increases the computational
efficiency by means of segmenting the data into subaperture
SAR data and merging the subdata on polar grids to obtain
the final image. Most FFBP algorithms are based on the
linear trajectory [4]. In this letter, a fast BP algorithm (FBP)
tailored for CSAR is proposed. By studying the circular flight
configuration, the geometry of the circular subaperture is used
in the image merging and interpolation kernels, making the
proposed algorithm precise and efficient.

II. SIGNAL MODEL

The geometry of Circular apertures of CSAR is presented
in Fig. 1. The radar follows the circular track with radius ra.
Assume that A is radar location where its azimuth angle is
zero and the coordinates of B are (ra, θ,H), θ ∈ [0, 2π). H
is height of the platform. ω is the angular speed, ta is the slow

time and θ = ωta. P is an arbitrary target point in the scene
whose coordinates are (rp, θp, 0).

Fig. 1. The geometry of circular apertures.

Let the transmitted signal be linear frequency modulated
signal, after demodulation and range compression, the collect-
ed data of target can be written as

s(tr, ta) = σWr(tr − 2R(ta)/c)wa(ta) exp(−j4πfc/c) (1)

where tr is the fast time, σ the backscattering coefficient of
target, R(ta) the range between the radar and the target, fc
the carrier frequency. Wr and wa are the range and azimuth
envelopes, respectively.

A. Algorithm description

To perform the CSAR FBP algorithm, it is necessary to
divide the aperture into subapertures first. Here the geometry
of CSAR subaperture merging is provided to find a way
of computing the new range and angle in the subimage
merging. Additionally, the coordinates (r, sinα) are adopted
in the processing instead of (r, α), increasing the algorithm
efficiency.

In order to process the CSAR echo data, the first step is
to partition the collected data and form coarse subimages. In
Fig. 1, let point A be the aperture center point and B be the
aperture center of next step. For A, the polar coordinates of
target P are (r, α), and the polar coordinates change to (R, β)
with new aperture center B. The relationship between the
two coordinates need to be found. Based on the trigonometric



identities, the range R can be expressed as

R = (d2 + r2 − 2r1d cosαa)
0.5 (2)

with

d = (2r2a − 2r2a cos θ)
0.5 (3)

αa =
π − θ

2
− α (4)

and the angle β can be presented as

β = arccos

(
R2 + r2a − r2p

2Rra

)
(5)

Back projection integral can be used here to obtain the
subimages. And the back projection integral of echo data
can be described in the wavenumber domain, i.e., the spatial
frequency domain. The subimage magnitude Ik(r, sinα) is
coherently accumulated.

Ik(r, sinα) =

∫ θk+∆θ

θk−∆θ

s(r, θ) exp(−jKcr)dθ (6)

where θk denotes the azimuth angle with respect to the
kth subaperture, ∆θ means the coverage of the subaperture
azimuth angle, Kc = 4π/λ is the wavenumber and λ is
the wave length of the carrier frequency. Different from
the conventional polar grid system (r, α), in the proposed
algorithm, the (r, sinα) coordinate system is used to reduce
the redundant computation of trigonometric functions in the
processing.

After achieving the coarse subimages, the next step is sub-
aperture fusion. In the new subaperture local polar coordinate
system, every pixel’s original location can be calculated by
taking advantage of equation (2). Here the Nyquist sampling
requirements should be satisfied to avoid ambiguity. The final
image will be obtained with all the subspectrum merged
together.

B. Computational cost and analysis

The computational load of proposed algorithm is analyzed
in this section. Fig. 2 depicts the computation load of the
two algorithms with the total image pixels N = 16384.
The number of subapertures k varies from 1 to 1024. It can
be found clearly from the figure that, as the subapertures
increases, the total computational load will decrease rapidly.
Comparing with the traditional BP algorithm, the computation
complexity of FBP becomes lower and the efficiency improves
significantly.

III. SIMULATION RESULTS

Fig. 3 shows the simulated imaging results. It can be seen
from Fig. 3(a) that all five points are well focused. Fig. 3(b)
depicts the one-dimensional IRF of one of the target point
located at (0, 20). From the figure, we can find that the
proposed FBP algorithm can deal with the CSAR imaging
precisely and efficiently.

Fig. 2. Number of complex multiplications as subaperture number k
increases.

(a) (b)

Fig. 3. Imaging performance. (a) Five points imaging results for proposed
approach. (b) One dimensional IRF of the point target.

IV. CONCLUSION

We have analyzed the CSAR geometry and designed a fast
back projection algorithm based on the CSAR configuration.
A sin domain coordinates system is introduced to optimize the
computation. The simulated experiment validates the focusing
accuracy of the proposed approach and the computational
superiority over the conventional direct BP algorithm.
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