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Abstract—Creeping wave propagation is explored within the
framework of the well-known high-frequency asymptotic solu-
tion to the canonical problem of a line source radiating in the
presence of a perfectly conducting circular cylinder of electrical
radius ka. Employing the Watson transform to the appropriate
eigenfunction expansion solution, the creeping wave propagation
constant ν, for a given ka, are the zeros of H(2)

ν (ka) = 0

(or H(2)′
ν (ka) = 0), for electric (or magnetic) line sources,

respectively. For electrically large cylinders, |ka| ≫ 1 and
|ν| ∼ ka, it is customary to replace the Hankel functions by
their Airy representations. The (composite) asymptotic form of
the Airy function contains dominant and subdominant terms
which switch roles across the Stokes lines. In this work, a
new algorithm is proposed to calculate the creeping wave
propagation constant based on uniform asymptotic expansion
of the Airy function across the Stokes lines.

I. INTRODUCTION

The high-frequency electromagnetic field in the geomet-
rical shadow region of a canonical convex surface can be
expressed via the exact eigenfunction solutions [1], [2],
having practical applications to conformal antennas [3]. It is
well known that for the simplest canonical geometry of a cir-
cular cylinder, computations utilizing the exact eigenfunction
solution becomes exceedingly challenging for electrically
large cylinders (ka → ∞). In such specific situations, the
eigenfunction series is converted to a contour integral [4]–
[6], that is evaluated via residues or by other sophisticated
asymptotic methods [7], [8]. The subject of this investigation
is to study the numerical evaluation of the shadow region (or
creeping wave) field obtained by asymptotic methods.

Of the many high-frequency asymptotic methods, the Uni-
form Theory of Diffraction(UTD) [9]– [12] has found many
practical applications. The radiation from creeping wave is
a dominant contributor to the scattered field in the shadow
region [13]. According to the UTD ansatz, the creeping wave
travels along the shortest path (geodesic) between two points
on a convex surface, undergoing an exponential attenuation
in the direction of geodesic path of propagation.

Analysis of creeping wave propagation has been exten-
sively studied earlier by various authors [14]- [17]. Em-
ploying the Watson transform [4], [18], and using the Airy
approximation to the Hankel function [19], the creeping wave
propagation constants are determined. Recent investigations
on creeping wave scattering by a PEC circular cylinder ex-
cited by a line source [20], [21] utilized a more general form
of the Airy function than [19]. These generalized asymptotic

forms are obtained from recent techniques [22]– [29] that
essentially uniformize the Airy function with large com-
plex argument across the Stokes lines, yielding a composite
asymptotic expansion. The main purpose of this investigation
is to revisit the numerical calculation of creeping wave
propagation constants using the uniform asymptotic form of
the Airy function [27, p. 80, Eq. (1.7.3)]. This specific form
corrects the asymptotic representation when Stokes lines are
crossed, and is a generalization of the one used in [19,
Eq.(19)].

The limitation of the approach proposed here is that it
strictly applies to perfectly conducting surfaces. A consid-
eration is that although the present formulation is directly
relevant for a line source (2-D) problem, one can directly
extend the concepts to the 3-D problem [1], [2], [7].

In what follows, section II briefly summarizes the new
concept of hyperasymptotics from an earlier exposition [30]
of the same within the framework of the Airy function of
a complex argument. This is followed by description of an
algorithm primarily developed from [20], [21] in section
III. Numerical results from this algorithm are currently in
progress and shall be furnished at the time of presentation.

II. AIRY FUNCTION AND HYPERASYMPTOTICS

For large arguments, the Fock approximation [15], to the
Hankel function H(2)

ν (νz) gives its asymptotic representation
[22, p. 232–233, Eq. (10.20.6)] that reads,

H(2)
ν (zν) ≈ 2e+ȷπ/3F(ζ, z)

(
Ai(µ)

ν1/3

+∞∑

k=0

Ak(ζ)

ν2k

+
e−2ȷπ/3Ai

′
(µ)

ν5/3

+∞∑

k=0

Bk(ζ)

ν2k

)
. (1)

In (1), z = ka
ν and the explicit forms for the function F(ζ, z),

and the coefficients Ak(ζ) and Bk(ζ), can be found in [22]
and are omitted for brevity. The transformation variable ζ is
given by

2

3
ζ

3
2 = ln

(
1 +

√
1− z2

z

)
−
√
1− z2, if 0 < z ≤ 1,

2

3
(−ζ)

3
2 =

√
z2 − 1− cos−1

(
1

z

)
, if 1 ≤ z < ∞.

(2)
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Finally A0(ζ) = 1, and the higher order coefficients can be
through recursion. (The asymptotic form of H(2)′

ν (zν) is also
available in [22, p. 233].)

Retaining the dominant (k = 0) terms only, one can obtain
from (1), the relation:

Ai(µ)

Ai
′
(µ)

≈ −e−ȷ2π/3ν−4/3B0(ζ) where,

µ = e−ȷ2π/3ν2/3ζ, and,

B0(ζ)

∣∣∣∣∣
ζ→∞

≈ − 5

48ζ2
. (3)

Equation (3) is to be solved for determining the zeros of
the Hankel function. The Airy function & it’s 1st derivatives
are analytic functions that admit convergent series expan-
sions [24, p. 91, Eq. (4.23)]. However when its asymptotic
expansions are desired, then the algebraic process introduces
different multivalued functions that are valid within limited
regions of the complex plane. So, one asymptotic expansion
cannot be analytically continued to the other and is the
cause of the Stokes phenomenon. Across the Stokes lines
of the Airy function, which occur at rays emanating at
angles ± 2π

3 , there is a severe numerical discontinuity in
the two asymptotic expansions. This is corrected through
a uniformization and is described in [27]. From [20], the
uniform asymptotic expansion of the Airy function can be
obtained as:

Ai(z) ≈ 1

2
√
π
z−

1
4 [f(z) + ȷS(z)f−1(z)],

Ai
′
(z) ≈ −1

2
√
π
z+

1
4 [f(z)− ȷS(z)f−1(z)],

f(z) = exp(−2

3
z

3
2 ),

S(z) =
1

2
+

1

2
erf[σ(z)],

σ(z) =
ℑm[F(z)]√
2ℜe[F(z)]

,

F(z) = −4

3
z

3
2 . (4)

Across the Stokes lines the term S(z) takes a value of 1. The
subdominant f−1(z), and dominant f(z), terms in (4) switch
roles across the Stokes lines. This phenomenon significantly
contributes to the location of the complex zeros of the Airy
function [23], [28], [29] and hence the solutions to (3) & (2).

III. PROPOSED ALGORITHM AND RESULTS

Using (4), (3) will be solved numerically for the creeping
wave propagation constant ν and the results are anticipated
to be furnished at the time of the presentation for various
values of ka.
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