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Abstract—The Sherman-Morrison-Woodbury formula-based
algorithm is applied to enhance the computational performance
of the characteristic basis function method (CBFM) when applied
in a context of 3D full-wave model to the scattering by complex-
geometry precipitation particles. The improvement brought by
this algorithm, particularly to the compression rate achieved by
the CBFM, enables us to simulate electrically larger particles
while maintaining a satisfactory level of accuracy and a reason-
able computational cost.

I. INTRODUCTION

Recent studies have pointed out the importance of a re-

alistic and efficient modeling of electromagnetic scattering

by complex-shaped hydrometeors for a better analysis of

precipitation active and passive sensors observations. In this

context, we have previously developed a 3D full-wave model

for EM scattering by complex-geometry and electrically large

snow particles, based on an integral representation of the

electric fields inside the scatterer. The model is applied, in the

frequency range of 3 GHz ≤ f ≤ 200 GHz, to a realistic set of

particles modeling aggregate ice particle with different shapes

and sizes (OpenSSP). The volume electric integral equation,

solved using the conventional Method of Moments (MoM),

places a heavy burden on the CPU time and memory usage.

To address this problem, the Characteristic Basis Function

Method (CBFM) [1], which handles large radiation and scat-

tering problems using the domain decomposition approach,

was applied in order to significantly enhance the computational

performance of our 3D model. The CBFM has shown good

computational performance and satisfactory level of accuracy

when compared to the conventional MoM and to DDScat

[2], the commonly used implementation of the discrete dipole

approximation (DDA). It enables us to solve electrically large

snow aggregates of upward 10 million of unknowns for the

lower frequencies, on a 64 GB shared memory workstation

while consuming only a reasonable amount of CPU time,

which is as example up to 16 times lower than DDScat for a

particle discretized into 130 000 cells. Nevertheless, the model

still places a heavy demand on the memory storage as well as

on the CPU time for larger EM scenes. In this work, we focus

on enhancing the CBFM algorithm in order to cope with the

computational challenges we encounter when dealing with the

simulation of electrically larger snow aggregates. This entails

the use of the Sherman-Morrison-Woodbury Formula (SMWF)

to speed up the generation of the characteristic basis functions.

In this paper, we review the impact of the block size on

the computational performance of the CBFM to justify the

application of the SMWF for the calculation of the CBFs. We

briefly detail the fast CBFs generation via SMWF. Finally,

numerical results are presented to compare the performances

of the new code with the conventional CBFM and DDScat.

II. EFFICIENT CALCULATION OF CBFS BASED ON THE

SMWF

The CBFM algorithm begins with the decomposition of

the computational domain of Nbc elementary cubic cells into

M blocks, and then proceeds to generate the Macro-basis

functions (MBFs) for these blocks by solving, for each block

i, the following system of linear equations

ZMoM
ii EMBFs

i = EIPWs
i (1)

where ZMoM
ii is the self-coupling matrix of block i and

EIPWs
i represents the NIPWs plane waves excitation illu-

minating the block i. A singular value decomposition (SVD)

and a threshold of 10−3 are then applied to the MBFs to

remove the redundancy and down-select a reduced number

of basis functions for the block i. Next, the initial 3Nbc basis

functions and the total obtained K CBFs are combined using

the Galerkin method to generate the final reduced matrix Zc.

A. Impact of the size block on the CR

The number of CBFs K retained is much lower than the

number of original low-level basis functions. The resulting

compression rate is the ratio between the number of the orig-

inal basis functions and the number of post-CBFM unknowns

(CR = (3Nbc)/K). It is well known that increasing the size

of the blocks have a positive impact on the compression rate

CR achieved by the CBFM [1]. However, using large blocks

also leads to a dramatic increase of the CPU time, particularly

the one needed to compute the CBFs, since we increase the

size of the self-coupling matrix ZMoM
ii . To avoid this increase

in the CPU time associated with the large CBFM block, while

maintaining the achieved high compression rate, we use the

SWMF while solving Eq. 1 for each block i. This formula

was used in [3] to ensure a fast direct solution of the reduced
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matrix Zc. Here, we apply it when dealing with large blocks,

in the process of generating the CBFs, to maintain a high CR

without having to bear the associated computational burden

both in terms of CPU time and memory requirement.

B. SMWF for the calculation of the CBFs

The SMWF-based algorithm (SMWFA) is used to efficiently

solve Eq.1. It proceeds by implementing a multilevel binary

division of ZMoM
ii , where the self-coupling submatrices are

subject to the next level and the off-diagonal ones are ap-

proximated by using the adaptive cross approximation (ACA)

algorithm. Indeed, the basic idea of implementing the SMWFA

is to recursively substitute the equation ZI = E, rewritten as
(
Z11 Z12

Z21 Z22

)(
I1
I2

)
=

(
E1

E2

)
(2)

by the following two smaller systems of linear equations

I1 = Ê1 − Û12x2 (3)

I2 = Ê2 − Û21x2 (4)

where Ê1 = Z−1

11
E1, Û12 = Z−1

11
U12, Ê2 = Z−1

22
E2 and

Û21 = Z−1

22
U21. The sizes of U12 and U21 are (3Nb/2)× r1

and (3Nb/2) × r2, while the sizes of V12 and V21 are

r1 × (3Nb/2) and r2 × (3Nb/2). Nb is the number of cells

per block, and r1 and r2 are the effective ranks of Z12 and

Z21, which result from the compression of the off-diagonal

submatrices Z12 and Z21 using the ACA algorithm. We refer

the reader to [3] for further details about the implementation of

the SMWF-based algorithm. The recursive application of the

SMWFA enables us to implement the CBFM with numerically

large blocks, which ensures a high CR, without having to

calculate all the 3Nb × 3Nb terms of ZMoM
ii or to solve

the associated expensive system of linear equation. Finally, in

order to further reduce the CPU time needed for the generation

of the CBFs, the self-coupling matrices ZMoM,L
ii of the finest

level (level L) are sparsified by simply discarding any element

lower than 10−3 × ZMoM,L
ii (1, 1).

III. NUMERICAL RESULTS

To check the accuracy and the computational performance

of CBFM-SMWF approach, we apply it to the electrically

medium complex-geometry snow particle presented in Fig. 1.

Fig. 1: Snow Aggregate divided into M = 27 and 4 blocks

The particle is discretized into Nbc = 24385 cells (73155
unknowns) and divided into M = 27 CBFM blocks for

the application of the conventional CBFM, then into only

M = 4 blocks to compare with the new approach. The

error criterion for the ACA algorithm ǫACA is initially set

to 10−2, then 10−3 to check its impact on the accuracy of the

CBFM-SMWF. Fig. 2 shows the extinction and backscattering

efficiency factors Qext and Qbks as functions of the frequency

f , computed for 2701 incident directions with the CBFM

codes and 2352 target orientations with DDScat. Fig. 2 shows

a good agreement between the results obtained with DDScat

and the CBFM and those derived by the CBFM-SMWF code

for ǫACA ≤ 10−3. With 4 large blocks, the CBFM-SMWF

achieved high CR going from 164 for the higher frequency

to 754 for the lower one, and needed 230 min to calculate

the averaged scattered quantities. Thus, it clearly outperforms

the conventional CBFM wich needed 210 min, with smaller

blocks, to achieve 39 ≤ CR ≤ 155. Note that applied to

4 large blocks, the conventional CBFM takes 1570 min to

compute the scattering quantities, while DDScat requires 3458
min to yield comparable results.

Fig. 2: Variation of orientationally averaged scattering coeffi-

cients calculated with DDScat and the two CBFM codes.

IV. CONCLUSIONS

The SMWF is used to speed-up the calculation of CBFs

for scattering by complex-shaped snow particles. Results show

that we can achieve a satisfactory level of accuracy, while

significantly increasing the compression rate realized via the

use of CBFM. We expect the CBFM-SMWF to provide even

better computational performance when applied to electrically

larger or to a volume of complex-geometry particles.
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