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Abstract—An alternative matrix block hierarchy construction 
process is presented for  -matrix based fast direct solvers. In the 
proposed method, the traditional distance-based criterion for 
admitting a given block of the impedance matrix is augmented by 
also evaluating the admissibility of its children blocks.  

I. INTRODUCTION 

Fast direct integral-equation methods based on the -matrix 
framework [1] are becoming increasingly more popular for 
electromagnetic simulations; e.g., they have recently been 
proposed for hydraulic fracture diagnosis [2], network 
parameter extraction [3], and predictive modeling of electronic 
packages [4]. Such methods can outperform traditionally used 
fast iterative methods if the problem of interest requires 
solutions for multiple excitations and/or the number of iterations 
needed for convergence of the iterative linear system solver is 
relatively large [2], [4]. 

 -matrix approximation of the dense impedance matrix 
arising from the method of moments discretization of integral 
equations relies on the matrix block low-rank structure. Indeed, 
the impedance matrix block corresponding to an interaction 
between well-separated subdomains of the region of interest is 
expected to have an effective rank that is significantly smaller 
than the number of basis/testing functions, i.e., matrix block 
column and row dimensions. The choice of the block hierarchy 
greatly affects the performance of the fast method and required 
memory. Commonly, a simple partitioning and purely 
geometry-based admissibility criterion are used to determine if 
basis and testing subdomains are well-separated relative to their 
sizes [1]–[5]. 

A better block hierarchy can be potentially achieved by 
estimating a block’s rank in advance; however, the construction 
process must remain efficient with respect to the other parts of 
the algorithm, so a fast rank estimation algorithm must be used 
in this case, e.g., [6]. This article presents a modification of the 
traditional admissibility criterion that improves the obtained 
block hierarchy by unifying certain matrix blocks based on their 
child-parent relations. 

II. PRESENTED WORK 

The construction of the block hierarchy can be described in 
two steps. First, the solver bisects the geometry hierarchically 
into disjoint subdomains until the leaf size is reached forming a 
cluster tree that has at the  th level  )(2  subdomains. Next, 
the solver constructs the block hierarchy by recursively 
checking if an interaction ( ) ( )( )i i     between a cluster of 
basis functions ( )

j
 and cluster of testing functions  ( )

i
  at the 

 th level is potentially low-rank, according to a certain 
admissibility criterion. If the interaction ( ) ( )( )i j   is 
admissible, the corresponding impedance matrix block is 
approximated in a low-rank form 
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,2 ,2 )( i j
      are considered. The 

process repeats until the leaf level is reached.   

In  [2]–[5], the admissibility of the interactions is determined 
by a simple distance-based criterion: 
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Here, diam( ) denotes the diameter of the box bounding the 
source/observer cluster and dist( , )   is the minimum distance 
between them. Notice that calculation of the minimum distance 
between the basis/testing function clusters ( ) ( )dist( , )i j

    
rather than their bounding boxes in (1) is non-trivial for general 
non-convex domains. In (1),   is a tuning parameter that 
controls the number of blocks at each level   that are 
approximated using low-rank form.  

 While the above process rapidly segregates the block 
hierarchy into admissible and inadmissible blocks, it can fail to 
identify compressible blocks or result in matrix blocks that are 
stored inefficiently, e.g., some blocks may have to be partitioned 
further or unified with their neighbors to achieve optimal 
performance. To demonstrate this, consider an interaction 
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( ) ( )( )i j   that fails the admissibility criterion (1) but is such 
that all its children ( 1) ( 1)
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     meet the criterion for the 

same value of  . Next, consider a partitioned matrix of the form 
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where (
1,1

1)Z  , (
1,2

1)Z  , (
2,1

1)Z  , and (
2,2

1)Z  are the matrix blocks 
representing the children’s interactions, respectively. It can be 
shown that the rank of the parent block is bounded by [7]  
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For simplicity, let 1,2 1,2 / 2 / 2m n m n   and  
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Then, the storage of the matrix block representing an interaction 

( ) ( )( )i j    in HAB -form at ( 1) th level requires )(4mk  
memory, whereas storing the interaction at the level   would at 
most require )(10mk  memory. This indicates that the parent 
block, which was discarded by the traditional admissibility 
criterion (1), is compressible. The further away from the upper 
bound in (3) is the ( )

,rank( )Zi j
 , the more inefficient would be the 

result of the traditional admissibility criterion. Numerical tests 
indicate that the upper bound in (3) is often not tight at all; thus, 
augmenting the admissibility criterion in (1) as 
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will reduce the memory requirement and computational time for 
 -LU factorization and  -back substitution significantly. In 
(4),   is the logical OR and   is the logical AND operation. 
The performance of the criterion in (4) was evaluated by 
constructing a fast direct solver using the algorithm in [2] and 
will be shown at the conference. 
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