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Abstract— Would it be possible to reduce large numerical 

weather predictions to the size of an email attachment? This 

question was given a positive answer in a recent internship after 

which a prototype for (de-)compression was tested in two field 

experiments. Large volumes of weather were shown to be 

reduced to less than a percent of the original datasets but this 

came with the price of information loss. In this study a method 

for lossy compression of weather data is described by 

representing the data as a sparse and adaptive subset. Adaptive 

sampling is then solving an optimization problem for the minimal 

loss of information for applications in radar propagation 

modeling. 
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I. INTRODUCTION 

Numerical Weather Predictions (NWP) are a scientific 
product of ever increasing accuracy. The current state of the art 
is that 4 model runs become available each day in 3km grids 
covering more than 60 model levels in 1 hour forecast steps. 
Already the supply of NWP has grown to large data volumes 
and increases in resolutions are to be expected [1]. 

Most if not all operational users of NWP do not demand the 
full set of available data. The obvious control of data volume is 
to obtain relevant parameters only, for a limited set of forecast 
hours and within some geographical boundaries.  But even then 
there could be good reasons for users to reduce the volume of 
weather data. NWP is a time-critical product so it makes sense 
to use compression to save space and transmission times. Data 
formats such as NetCDF and Grib2 support lossless 
compression while maintaining quick access to the data [2]. 

This paper aims to go beyond these measures in support of 
those users that require substantially smaller datasets in 
exchange for some loss of information.  

II. LOSSY COMPRESSION BY ADAPTIVE SAMPLING 

A. Intended application: use of NWP at sea 

A typical case of time-critical use of NWP that would 
benefit from the large data reduction that lossy compression 
might offer is planning of activities by ships at sea. The relative 
slow, limited and at times interrupted availability of satellite 

communication makes that ships in general do not have access 
to NWP. The most demanding use of NWP is probably in 
applications for radar propagation modeling as these use data 
from all the model layers – so this will be the use case studied 
here. Lossy compression can be formulated as an optimization 
problem: compress a large NWP to a specified and much 
smaller data volume (based on the available bandwidth), where 
the loss of information has the lowest impact on radar 
propagation modeling. In other words: given a reduction factor, 
suppress the data degradation as much as possible. 

B. General approach of compression and decompression. 

The dynamic character of local weather conditions can 
have a strong impact on radar propagation. It has been shown 
that linear down-sampling (or decimation) from data sets with 
high range resolution can introduce various artifacts [3]. A 
better approach for compression would therefore be to replace 
a large grid of data by a subset of well-chosen samples. 
Decompression is then a matter of restoring the data grid by 
interpolation from the sample points. Compression with less 
information loss can be achieved by adaptive sampling, a 
procedure that aims to select those samples that will enable the 
best approximation of the original grid [4]. 

C. Measuring information loss 

To measure the information loss of compression one has to 
compare the original data Y with the decompressed data Ŷ. Two 
common measures are the mean squared error (MSE) and the 
peak-signal to noise ratio (PSNR). 

 MSE = 1/n Σi=1..n (Yi-Ŷ i)

 

 PSNR = 10log10 ((Ymax-Ymin)
2
 / MSE) 

In (1) Y and Ŷ count n data points and in (2) Ymax and Ymin 
are the largest and smallest values in Y. The (root) MSE is an 
intuitive measure: the unit is the same as for Y and Ŷ, and the 
MSE drops to zero when there is no information loss. The 
PSNR is preferred when losses are to be compared over 
different data sets. 
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Fig. 1. Comparison of adaptive sampling methods for varying reduction 

rates. A long running Genetic Algorithm (GA) gives the highest PSNR and 
thus the least loss of information. 

 

Fig. 2. Information loss depends on the distribution of available samples 

over q and T. For the lower hybrid levels the dark area to the right indicates 

that information loss is more sensitive to specific humidity than to 

temperature. 

 

 

Fig. 3. The cumulative distribution of the total information loss gives 

Specific Humidity emphasis over Temperature with a factor 73/27≈2.8. 

Radar propagation depends on profiles of modified 

refractivity. These M-profiles can be calculated from specific 

humidity, temperature, pressure and geometric height. The last 

two parameters can be recalculated from the lowest layer, and 

so omitting layers two and higher up is already a good start for 

lossless compression. Other surface-layer parameters like 

wind and sea-surface temperature are useful for assessment of 

the evaporation duct [5], but as these are single-layer 

parameters most reduction can be expected from the many 

layers of specific humidity and temperature. 

III. RESULTS 

Various methods for optimal adaptive sampling have been 
studied in [4]. From these, Fig.1 shows that a long running 
genetic algorithm outperforms the other studied methods. This 
method is a guided search strategy that requires the longest 
compression time (times are not shown). 

Using the inferior but faster random sampling method, 
Fig.2 depicts how the information loss depends on the balance 
between samples of specific humidity and temperature.  In the 
studied NWP example, most information loss of the M-profiles 
occurred in the lower hybrid levels, which hints that more 
samples should be used for lower levels than for higher levels.  

Fig.3 shows the information loss of the M-profiles for the 
integral atmosphere and in the same dataset. The cumulative 
distribution of the RMSE points out that the specific humidity 
should be given more weight than the temperature. In this 
example the ratio for adaptive distribution of samples between 
specific humidity and temperature is 2.8. 

IV. CONCLUSION 

Large datasets (>> 100MB) of numerical weather 
predictions can be reduced to the size of an email attachment 
(<< 10MB). The loss of information can be measured and 
minimized by use of adaptive sampling. It has been shown that 
specific humidity has more significance than temperature, as 
do model layers at the lower heights.   
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