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Key Points 

Random geometries are prevalent in mobile intelligent system coordination 

Node position in random volumetric arrays is essential to array control 

Image processing techniques improve accuracy for random array control 

 

Abstract 

This work proposes the combined use of spatial recognition techniques and infrared depth-of-

field sensing in a phased array control system for morphing clusters of randomly distributed 

antennas. The system is designed to uniquely identify array elements (or platforms) and track the 

motion-dynamic spatial distribution to provide feedback and control information for phase 

shifting and beamforming. The specific focus of this work is to examine the core performance of 

the phased array control system. This begins with the use of spatial recognition algorithms in a 

discovery phase to establish element identities and analyze their locations in the optical field of 

view. This process informs the accompanying depth-of-field sensor so it can evaluate the spatial 

distribution of elements and enable the tracking of element locations in time. This information is 

relayed to a distributed array controller that identifies the bounding manifold of the array 

(curvilinear, spheroidal, etc.), and calculates phases for the elements to achieve the desired beam 

steering operation. The system also includes a user interface for a mobile device (smartphone, 

tablet, etc.) which can be used to control the phased array and link geolocation information for 

autonomous tracking modes. A system operating at 2.4 GHz has been constructed using low-cost 

off-the-shelf components, as well as custom-designed element platforms so the performance of 

the system can be observed experimentally. Results for element identification and spatial 

distribution are included to benchmark the accuracy of the aforementioned system.  



 

Index Terms – Signal processing (0674), Space and satellite communication (6979), 

Instruments and techniques (6994) 

 

1. Introduction 

Low-cost vision systems and open-source computer vision libraries have emerged as viable tools 

for the development of spatial awareness techniques for intelligent and autonomous systems. The 

specific use and advantage of these tools derive from tightly coupled color and depth images that 

link visual environmental properties with a respective physical location. These tools have been 

extensively developed and successfully utilized for a variety of applications [Kanezaki et. al., 

2011; Nakamura, 2011; Clark et. al., 2014] related to object tracking, terrain mapping, and 

collaborative task management. These spatial recognition techniques have also been used with 

autonomous vehicles, unmanned air vehicles (UAVs), and micro air vehicles (MAVs) to improve 

their autonomous control and coordinate complex movements in clusters or swarms [Moshtagh 

et. al., 2009].  

 

The combined use of color and depth of field information in these application spaces has enabled 

the analysis of clustered objects in a single frame of reference. It also reduces the computational 

complexity and enables further research of swarms and clusters in applications of mobile ad-hoc 

networks as in [Ochiai et. al., 2005; Warty et. al., 2013] and autonomous vehicle collaboration. 

Distributed sensor networks leverage local node processing power for data acquisition, 

temporary storage, and conditional pre-processing. These individual pieces of information can be 

holistically analyzed to reveal profitable system-wide analytics, statistics, and other metrics that 



have widespread applications. These networks have derived increased performance and 

information capabilities when the spatial distribution of nodes in the cluster was dynamic. 

Networked swarms of UAVs are one such platform that has been researched to perform mobile 

sensing tasks and to fly collectively in various formations as in [Dac-Tu Ho, 2013]. This type of 

collaboration has allowed groups of UAVs to accomplish tasks together that a single UAV could 

not accomplish alone. Coordination in both static and dynamic applications is typically 

conducted through wireless data streams that must handle dynamic adjustments to the wireless 

channels. Increasing node count results in a commensurate complex electromagnetic 

environment. This leads to several wireless challenges including channel interference, local 

synchronization problems, and additional hardware communication issues. 

 

Electromagnetic design and spatial control therefore play an important role in defining wireless 

performance of a clustered network and its communication capabilities. The dynamic cluster is 

of particular interest because of the electromagnetic implications that arise with changing 

position and configuration of communications hardware. A single UAV antenna and radio are 

useful for peer-to-peer communications and for direct communication with a base station in close 

proximity. It can be shown however that enriched electromagnetic and communication ability 

can be derived from coordinated use of each node’s antenna and radio into a phased array 

configuration as in [Ochiai et. al., 2005]. Immediate benefits of coordinated radios and antennas 

include increased gain, directivity, and communication distance. Phased array configurations in 

both static and dynamic cases contain elements that may be aperiodic (random) with respect to 

wavelength causing non-deterministic array behavior [Buchanan and Huff, 2014]. Network-

centric control of these random geometries presents several complex problems including spatial 



awareness, local oscillator synchronization, and collective signal phasing. Wireless local 

oscillator synchronization will not be considered in this work but remains an important area of 

research for random arrays and dynamic clusters [Baldoni et. al., 2010; Chen et. al., 2010] 

 

The scope of this work focuses on a novel system that detects spatial configurations and provides 

element phasing of random arrays within dynamic-positioning clustered frameworks. Previous 

work on random arrays in recent years is presented with an emphasis on element positioning and 

phasing control complexities. An autonomous phased-array control system is presented as a 

useful and scalable platform for phasing control of random arrays. Inclusion of infrared spatial 

discovery techniques from a Microsoft Kinect camera using computer vision algorithms is then 

presented as an extension of the phased array control system. An intelligent antenna design 

modeling a UAV has been designed and fabricated for system tests. A spatial detection 

experiment has been conducted and the results provide the capabilities of the proposed system. 

 

2. Previous Work 

Random arrays have been studied extensively in the past few decades from theoretical and 

mathematical standpoints [Harrington, 1961; Lo, 1964]. New application demands utilizing 

beam steering, side lobe tapering, and geometrical optimization techniques have focused efforts 

on fabrication, control, and physical performance of random arrays [Buchanan et. al., 2014]. The 

resulting systematic control of random arrays for these applications has been complex due to 

control requirements that demand continuous observations, calculations, and reactions to 

preserve or achieve desired radiation behavior. Element position directly impacts the array factor 

that is combined with the element pattern to generate radiation behavior. The uniformly excited 



array factor encapsulates both element position and a desired beam scanning angle (θ,φ) shown 

in (1). 
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The wave number k and relative displacement d contribute with sine and cosine angular factors 

to generate progressive phase shifts for each element in Euclidean space given by (2), (3), and 

(4). 
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These progressive phase shifts dictate the behavior of beam-steering, sum-difference, and other 

radiation patterns. Progressive phase shift control was examined in previous work from 

[Buchanan et. al., 2014] through a fabricated a microstrip patch array that used phasing 

information in an array controller to achieve beam steering and sum-difference radiation 

patterns. 

 

Figure 1. (Left) Microstrip patch volumetric random array (Right) Measured radiation pattern 

from array 



 

The radiation pattern in Figure 1 displays a successful 7.5 degree incremental beam-steering 

radiation scan from -45 to + 45 degree of a 32 element volumetric array. This work utilized a 

smartphone enabled phased array controller that simultaneously controlled 32 individual element 

phases. The authors note that the controller could not generate phases without prior knowledge 

of the element position and required individual Euclidean manual measurements. These 

coordinates were either hard-coded or sent from the smartphone into the controller to produce 

accurate phase results. This meticulous error-prone process arises in tightly coupled distributions 

such as in Figure 1. It is therefore advantageous to expand the system to eliminate the source of 

human error and provide a closed loop spatial detection technique. 

 

3. System Architecture 

The automated phased array system in [Buchanan et. al., 2014] has two primary control 

components. A smartphone provides the first component. It gathers geolocation information 

from on-board GPS sensors and externally-determined element locations in 3-dimensional space. 

Localization data and element positions provide information for phase delay calculations and 

angular steering functions. The smartphone wirelessly transmits this post-processed data to an 

embedded control system. This modular controller converts scanning angles to individual 

element phases that are calculated according to (2), (3) and (4). These phases are converted to a 

voltage through a 16-bit digital to analog (DAC) and applied to the phase shifter through a 

mapping process that transforms the 0V-12V output to a corresponding phase shift spanning 0° 

to 450°.  
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Figure 2. (Left) Random array system control diagram (Right) High level system diagram 

 

The radio frequency (RF) signal in the experiment was single sourced and progressed through a 

network of amplifiers and power dividers before reaching individual phase shifters. This varies 

from the current problem as spatially displaced individual elements would require independent 

synchronization of RF paths or local oscillator synchronization seen in [Baldoni et. al., 2010; 

Chen et. al., 2010]. This realization is not included in this work but can be adapted to the 

proposed system in future work. The proposed novel architecture leverages the existing 

platform’s ability to calculate element phases and wireless GPS localization capability through 

the smartphone. The fundamental addition is a spatial recognition and tracking component as 

seen in Figure 2. The spatial recognition and detection component presented in this work provide 

element position data to generate phasing information for the random array. Discovered elements 

are localized within the cluster, and can be cached to memory or communicated to the control 

system. Cached elements are tracked for any positional changes during array control operations 

and any positional change can be communicated to the controller for phase adjustment. The 

previous tests results from [Buchanan et. al., 2014] include an additional intrinsic delay of the RF 



path that had to be measured for each element. This phase error must also be included in the 

individual element phasing calculation as shown in (5). 

    tot x y z path       (5) 

This resultant phase delay for each individual element is a combination of element position and 

the intrinsic RF path delay due to the amplifier, power divider, phase shifter, and cable 

connections.  

 

4. System Materials 

The implementation of the computer vision assisted phased array architecture requires hardware 

for spatial detection and recognition. The Microsoft Kinect was originally intended as a 

peripheral controller for Xbox 360 as it provides 640x480 pixel color and depth (denoted RGBD) 

data streams for computer-human interaction at a sampling rate of 30 Hz [Noonan et. al., 2011]. 

The camera was originally developed by PrimeSenseTM and uses a proprietary pseudo-random 

infrared detection technique for spatial displacement measurement. Infrared light scatters from 

the surface of an object to be projected into the receiving plane of the Kinect camera. Real world 

x, y, and z coordinates can be calculated and calibrated using internal parameters from the 

camera [Noonan et. al., 2011]. The final combined camera data stream provides a 640x480 

matrix of data which contains a red, green, and blue (RGB) 8-bit color code and a real world 

(x,y,z) coordinate for that specific pixel. This enables simplified environment awareness and 

object detection from both color and depth data streams. Color filtering is of particular interest 

due to minimally complex threshold filtration algorithms and a natural occurrence in both color 

and depth images. Color filtering is also agnostic of the image generation source and can be 



adapted to platforms such as Microsoft Kinect, LIDAR cameras, and other high resolution 

imaging hardware [Lili and Barth, 2011]. 

  

4.1 Antenna Design 

Using the Microsoft Kinect’s color and data information for spatial detection requires uniquely 

identifiable colored targets. Realistic targets for this system require a functional antenna design 

and a realization of common hardware frameworks utilized in autonomous vehicle swarms. The 

proposed platform combines these two requirements to produce a highly configurable and 

extendable embedded antenna platform to emulate autonomous swarm systems. 
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Figure 3. (Left) 3-D antenna module design (Right) Block diagram for antenna module 

 

A patch antenna on FR4 substrate (εr = 4.4) was designed for an operating frequency of 2.45 

GHz to align with results produced in [Buchanan et. al., 2014]. The substrate is shared with an 

embedded microcontroller, Ethernet controller featuring power over Ethernet (POE), a nine 

degree-of-freedom (9DOF) inertial measurement unit (IMU), and four (4) RGB light emitting 

diodes (LEDs).  A separate ground plane and through-hole via fence have been included in this 



design to electrically isolate the RF system and embedded circuits. Color configuration of the 

LEDs is communicated from a central control station through Ethernet to the microcontroller. 

The LEDs have also been placed in a rectangular distribution to enable easier discovery by the 

spatial recognition system. The microcontroller is capable of interrogating the IMU for rotation 

and temperature information to be communicated back to the central control system for further 

processing and calculation. Additional control pins of the microcontroller have been left 

unconnected for further adaptations and designs such as quad rotors, reconfigurable antennas, or 

other applications. 

 

5. Software System Design 

The software architecture is comprised of four separate stages: calibration, acquisition, 

calculation, and reaction. The first stage requests system calibration of the visual device to 

minimize measurement error in high noise environments. Subsequent spatial calibration of the 

Kinect can be run to remedy erroneous results or to reset error bounds used in position detection 

and estimation [Noonan et. al., 2011].  
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Figure 4. Block diagram for system software architecture 

 



The acquisition stage defines an interface to gather visual information from the visual source to 

be processed in the object detection algorithm contained within the calculation stage. Multi-

threaded calculation processes also spawn to extract information from color and depth images to 

be analyzed in the calculation stage. Threading is needed due to heavy demand of computing 

resources used during image processing techniques. The calculation stage processes image data 

acquired by the acquisition stage using image filtering techniques such as color thresholding, 

dilation, and erosion. The position detection and estimation calculation is dependent on pattern 

recognition in the RGB image in this system. Successful recognition yields a specific point of 

interest (POI) to be analyzed from the depth image. Cross correlation of the POI in the depth 

image finds the estimated location from the depth image. The position in Euclidean space is 

saved in storage for processing in the reaction stage. This stage is comprised of a control and 

data layer which communicates with the existing controller to calculate phases for each array 

element. 

 

5.1 Image Processing 

Several fields in computer science including robotics, artificial intelligence, and object 

recognition utilize complex image processing techniques to enable intelligent systems to 

recognize objects in their environment [Clark et. al., 2014; Kanezaki et. al., 2011; Nakamura, 

2011]. Commonly used techniques in object recognition rely heavily on color transforms. These 

transforms provide a distinct advantage to computers and systems by mapping color information 

into different vector spaces and coordinate systems to simplify calculation and pattern matching. 
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Figure 5. (Left) Image processing progression steps (Right) Pseudo code for detection algorithm 

 

Pattern matching is essential to object discovery and tracking. The proposed image processing 

algorithm in Figure 5 caches a desired footprint or pattern that is continuously analyzed in each 

RGB frame by the system. The proposed pattern footprint contains two large white areas housing 

4 small areas that represent the 4 LED locations on the modular antenna shown in Figure 6. The 

algorithm caches an RGB image and performs a common HSV color space color transformation. 

The HSV color space is a cylindrical transform that represents the luminance of colors that are 

observed in an image by incorporating the value (V) or brightness of the color. This algorithm 

uses color thresholds that have been empirically discovered due to varying brightness of LEDs 

on the antenna module. Unique color configurations for each antenna module require unique 

color thresholds bounds. Small threshold bounds permit greater use of colors of the same 

spectrum and reduce ambient color noise in the binary image. The produced binary image may 

still contain undesired noise from the surrounding environment that can be eliminated by eroding 

the image. A loop then continues to dilate the image until the black spaces representing the 

pixels have a matched depth location of 7mm or less. An average footprint with standard 

deviation is shown in Figure 6. This measurement is within 1mm of the actual physical LED size 

of 5 mm. 



RGB HSV Threshold Erosion Dilation Footprint

6mm (+/-)
1.6mm

 

Figure 6. Image progression for detection algorithm 

 

The final image should emulate or directly match the cached pattern to produce a point of 

interest. Points of interest are also cached in small arrays for time averaging. Averaging the 

points of interest filters any additional noise and erroneous outliers. 

 

5.2 Position Estimation 

The filtration process described in 5.1 produces points of interest that correspond to the LEDs in 

the four corners of the patch antenna. Each point of interest is defined with an additional real 

world x, y, and z coordinate from the Kinect’s depth stream. These coordinates are used to 

calculate the antenna’s position in Euclidean space. 
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Figure 7. (Left) Fabricated antenna module with numbered pixels (Right) Footprint matching 

with numbered pixels 

 



The antenna’s position is calculated by averaging the diagonal vectors from pixels 1 to 4, and 2 

to 3 as shown in Figure 7. This process is explicitly noted in (6) and (7). 

 { , , }| ,1,2,3,4mL x y z m center{L {{   (6) 

 1 4 2 3(( ) / 2 ( ) / 2) / 2centerL L L L L(( ) / 2 ( ) / 2) / 2L (( ) / 2 () / 2 ((( ) / 2 () / 2 () / 2 (   (7) 

The average finds the center point of the module which is stored in memory to be compared to 

other modules in the random array. A center point and footprint pixel location provide additional 

measurement mechanisms to verify the precision and accuracy of the resultant location shown in 

(7). These additional references provide physical dimensions that correspond to known 

dimensions of the antenna and when compared yield an estimation error that is used to further 

average the result shown in (7).  

 

6. System Fabrication and Testing 

A system based on design criteria and proposals from sections 4 and 5 was developed. Three 

antenna modules were fabricated and tested for experimental use as shown in Figure 8.  
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Figure 8. (Left) VSWR of simulated and fabricated antenna modules (Upper Right) Simulated 

antenna (Lower Right) Fabricated antenna  

 

Measured antenna results compared to simulation show a shift of approximately 20 MHz in 

frequency. The impedance result shows a disparity outside of the resonant frequency due to an 

initial offset that was not subtracted in the calibration. The antenna modules used a single cable 

for network connection and power supply during the experiment. The goal of the experiment was 

to determine the accuracy of the system with the Kinect as a visual-spatial acquisition tool for 

random array geometries. Accuracy in these experiments is defined as the comparison of the 

Kinect measured positions in their relation to a resultant phase error according to (2), (3) and (4) 

using the measurement error. The Kinect was placed at varying distances from the closest 

element in the array to gain insight about optimal viewing distances of the camera to most 

accurately measure element position. 
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Figure 9. (Left) Three antenna experimental setup (Right) Screen shot of software controller and 

Kinect tracking green antenna module 

 

The antennas were placed in a dark room to eliminate ambient light noise and were attached to 

three height-varying mounts on a measurement table. The Kinect camera connected to a 

computer which ran the system control software that performed all image processing and 

communication with the pre-existing phasing controller. 
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Figure 10. Standard deviation measurements for real world x, y, and z coordinates 

 

The graphs in Figure 10 show (x,y,z) coordinates for the closest antenna to the Kinect for four 

varied distances. Standard deviation increased as the Kinect moved away from the array to 

accommodate larger aperture size but had sub-millimeter drift in close proximity (z < 1m). This 

indicated that the image processing algorithm could successfully detect and track an element 

location with minimal change during time. A tradeoff is that as an aperture size increases the 

Kinect will be forced to move farther away increasing the potential for measurement error.  

Positions from the Kinect were then compared with hand measurements. Kinect spatial detection 

error in millimeters averaged between 4 – 8 mm with a worst case estimation error of 14 mm in 

the y axis at distance of 925 mm from the closest antenna. The measurement error and error 



range present the possibility of using this spatial recognition technique as a 4-bit or 3-bit phase 

shifter. 
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Figure 11. Relation between frequency, phase error, measurement error, and n-bit phase shifters 

 

This result is important because it provides a unique metric for evaluating the system at the 

design frequency in terms of potential phase error. The measurement error produces a phasing 

error that additively contributes to the total phase delay the antenna element experiences. It is 

therefore important to reference an n-bit phase shifter for the respective frequency and 

measurement error to determine beam-steering capabilities of the system. This metric 

additionally reemphasizes the importance of minimizing measurement error with higher 

resolution cameras and better spatial detection techniques such as those used with LIDAR.  

 

 

 



6.1 Error Tolerance in Random Arrays 

The estimation error of the Kinect and array system allows the phase shifter controller to operate 

at 4-bit phase shifter accuracy. This calculation was derived from equations (2) - (4) where the 

resultant phase error at a frequency of 2.4 GHz for 1mm error in measurement is approximately 

2.88 degrees. A simulation using microstrip patches from [Buchanan et. al., 2014] was 

performed to view the potential effects of these phase errors in the random array system. The 

antenna modules presented have not been measured but a comparison in element pattern is 

presented in Figure 12. 
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Figure 12.(Left) Microstrip patch from [Buchanan et. al., 2014] (Right) Antenna module 

radiation pattern for θ = 90o, φ = 0o 

 

The comparison of the two radiation patterns better predicts simulated models of the antenna 

modules in a fabricated physical array. After the element pattern was simulated, a 3-element 

array resembling the experiment was simulated to observe how the phase error impacts the 

radiation behavior of the array. Elements were simulated with the correct phase shift and then a 

randomized 4-bit phase shift error of (+/-) 22.5 degrees. 
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Figure 13. (Left) 3 Element simulated normalized gain radiation pattern (Right) 32 Element 

simulated normalized gain radiation pattern, both in plane: θ = 90o, φ = 0o 

 

The three element array is affected by the phase error output as it shifts the main beam off axis 

approximately 3 degrees. Sidelobe behavior is also effected as nulls are increased and an angular 

shift of maximum 6 degrees also occurs. The simulation was expanded to a 32 element array 

shown in Figure 13 to emulate the experiments performed in [Buchanan et. al., 2014] with a 

similar randomized phase error performed in the 3 element array. The main beam of the 32 

element array shifts less than 1 degree and the first sidelobe of the main beam increases by 3 dB. 
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Figure 14. Normalized gain radiation pattern for (Left) exact phase shift 32 element array (Right) 

randomized 4-bit phase error 32 element array 

 



Figure 14 shows a holistic and comprehensive view of the exact and randomized 4-bit error 

phase shifting radiation patterns displaying less than 1 degree of angular shift of the main beam. 

The sidelobe behavior of the 4-bit randomized array shows unsymmetrical shifts and increased 

gains of the closest sidelobe that is additionally seen in Figure 13 due to the randomized 4-bit 

error.  

 

7. Conclusion and Future Work 

A spatial recognition and ranging system for the detection and tracking of element positions for 

random arrays has been presented. A system architecture using the Microsoft Kinect as a spatial 

discovery tool was designed and realized. Configurable antenna modules resembling UAVs have 

been designed and presented as realistic targets for a spatial recognition and tracking system. An 

abstracted image processing software architecture presented accurate and precise capabilities for 

tracking the designed antenna modules. Fabrication of the antenna modules and subsequent 

experiments yielded results that the phased array control system, using spatial recognition 

techniques, operates in comparison with a 4-bit phase shifter. Overall, the complex dichotomy 

between the spatial recognition system and respective targets has been simplified through 

hardware and system design. This system was designed for several RF hardware platforms and 

can be abstracted in software design to accept various forms of inputs and variants to the data 

from other imaging sources. Future work includes testing various random array geometries of 16 

and 32 element random arrays on the fabricated platform shown in Figure 15 whose ‘arms’ or 

hoisting elements can be moved and fixed into random/various geometries. 



 

Figure 15. (Left) 16 element random array test apparatus (Right) Side view of test apparatus 

 

Overall, position estimation can be improved with further investigation into the image processing 

techniques, a higher resolution camera, and real-time calibration techniques; however, the 

random array control system, using the Kinect for spatial recognition techniques, provides a 

potential platform to perform closed loop position estimation control in volumetric aperiodic 

arrays.  
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