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Microwave breast imaging is currently being investigated for several clin-

ical applications including evaluation of breast density, detection of breast

cancer, and monitoring of treatment. It is a promising alternative to conven-

tional modalities in terms of cost, comfort, and safety. However, the requi-

site use of regularization techniques to solve the ill-posed inverse scattering

problem typically results in moderate imaging resolution. One technique to

improve microwave breast imaging resolution is to incorporate a priori struc-

tural information, also known as spatial priors, into the inverse scattering

algorithm. We extend our previously presented spatial prior method to 3D

and demonstrate its feasibility using high-fidelity numerical breast phantoms.

The method exploits the fact that the dielectric properties of different types

of tissues are distinct. The spatial prior method favors solutions to the in-

verse scattering problem that have small variations in dielectric properties

within each spatial prior region. The amount of variation allowed in each of

the regions is controlled by a single parameter that sets the strength of the

spatial prior constraints. The extension to 3D is aided by the fact that this

method uses sparse matrices and therefore is highly computationally efficient.

We evaluate the performance of the algorithm in the presence of different

levels of noise, and for different choices of the spatial prior strength control-

ling parameter. We also demonstrate the robustness of the algorithm with

respect to imperfect spatial prior information.
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1. Introduction

Microwave breast imaging via inverse scattering consists of reconstructing the di-

electric properties of the breast from measurements of scattered electromagnetic fields

Shea et al. [2010]. Microwave imaging offers several potential advantages compared

to other breast imaging modalities such as X-ray mammography and MRI: it uses

non-ionizing radiation, is low cost, and provides 3D tomographic images with quan-

titative information about tissue properties. This shows promise for several clinical

applications, such as evaluation of breast density, detection of breast cancer, and

monitoring of treatment.

However, resolution of microwave breast imaging via inverse scattering is typically

moderate. To reconstruct the dielectric properties of the breast, it is required to

solve a system of equations that has been linearized and is ill-posed. This requires

regularization techniques that usually result in smooth, or blurred images. Attempts

have been made to overcome the nonlinearity of the inverse scattering problem and

improve image resolution while preserving boundaries [van den Berg and Kleinman,

1995; Abubakar et al., 2002; Mojabi and LoVetri , 2009a, b; Irishina et al., 2010].

However, this is still a remaining challenge.

An alternative to improve image resolution is to incorporate a priori structural

information to the inverse scattering algorithm, also known as spatial priors. Struc-

tural information about the breast can be obtained from a different imaging modality,

such as MRI, and then incorporated to the microwave inverse scattering algorithm

to improve resolution and property estimation. Spatial prior methods exploit the
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fact that the different types of tissues that constitute the breast (mainly adipose

and fibroglandular tissue) have distinct dielectric properties, and therefore typically

use mechanisms that favor solutions with high contrast between the tissues and/or

penalize solutions with large variations within a tissue type. Spatial priors have been

added to microwave breast imaging algorithms in Golnabi et al. [2013a] and Golnabi

et al. [2013b]. In these cases, the spatial prior information was added to the inverse

scattering problem in the form of soft constraints, and experiments in 2D for simple

phantoms were reported. Furthermore, Meaney et al. [2013] presents a system for

coregistration of MRI and microwave breast imaging, and tests it on actual patients

using spatial priors.

In this paper we present a new method for incorporating spatial prior information to

the microwave inverse scattering algorithm Neira et al. [2014]. Our method also uses

soft spatial prior constraints, but concedes more flexibility than previously developed

methods ([Golnabi et al., 2013a, b]) in adjusting their weight, as they are not linked

to the regularization of the problem. This allows a wider range of variation of the

reconstructed properties in each of the regions provided by the a priori information.

Furthermore, our method is significantly computationally more efficient, as it stores

the prior information in a sparse matrix. This is particularly useful and necessary

when extending spatial prior methods to 3D.

We incorporate spatial prior information to the Distorted Born Iterative Method

(DBIM) that is a conventional technique used to solve the inverse scattering problem

Chew [1995]. We first evaluate the performance on 3D locally homogeneous breast
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phantoms, to assess the accuracy of property estimation under simple conditions.

Then, we test it on 3D realistic heterogeneous breast phantoms, obtained from the

UW phantom repository UWCEM Repository [online], and study the effect of differ-

ent levels noise in the measured data and different levels of weights for the spatial

prior constraints. Finally, we evaluate the performance of the algorithm when there

are errors in the prior information, in particular shifts in the location of the a priori

known regions, and discuss what we can expect from the algorithm given other types

of errors in the prior information.

The paper continues as follows. Section II provides a description of the conventional

DBIM for inverse scattering and how we modified it to incorporate soft spatial prior

constraints. Section III describes the simulation testbed and the phantoms we used

for our tests. Section IV shows the results, and Section V discusses and evaluates the

performance of the algorithm, and provides conclusions.

2. Method

We present an algorithm that incorporates spatial prior information to the distorted

Born iterative method (DBIM) (though the same modifications can be applied to

other inverse scattering methods). We first provide a brief description of DBIM

(more detailed descriptions can be found in Chew [1995]), and then we describe how

we modify conventional DBIM to incorporate spatial information.
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2.1. Conventional DBIM

To reconstruct the dielectric properties of an object inside region V by measuring

the electric fields outside the region, the DBIM attempts to solve the electric field

integral equation:

Es(robs) = ω2μ
∫
V
G

b
(robs|r′)Et(r′)[ε(r′)− εb(r′)]dr′ (1)

where Es(robs) is the scattered electric field, which is equal to the difference between

the measured field and the incident field that is present given the background with

dielectric profile εb(r), G
b(robs|r′) is the dyadic Greens function for the background,

Et(r′) is the electric field inside the unknown region, and ε(r) is the dielectric profile

of the unknown region.

In order to solve this equation, the DBIM linearizes the problem by setting Et(r′)

equal to the incident electric field, and discretizes the integral equation to form the

system Ax = b, to find x = ε(r′)− εb(r′), which is the vector containing the contrast

in each voxel inside the region V .

The solution x is then used to update the properties of the background, and the

problem is solved again until the residual scattered fields are negligible (and the re-

constructed dielectric properties of the scattering volume V are given by the updated

background). Since the problem Ax = b is ill posed, regularization techniques are

required to keep the variables bounded. In previous studies, conjugate gradient least

square error minimization with an early termination has been used for this purpose.
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2.2. DBIM with spatial priors

DBIM with spatial priors (DBIM-SP) assumes we have prior information about the

structure of the breast. In particular, it assumes we know the locations of different

types of tissues, and that we can segment the breast into regions corresponding to

the different tissues types. The breast consists mainly of two types of tissue: adipose

and fibroglandular. DBIM-SP uses the fact that adipose and fibroglandular tissue

have different electrical properties, but within a each type of tissue the properties

vary only slightly Lazebnik et al. [2007].

In conventional DBIM we solve for the contrast x in each iteration, which is a

vector that contains the contrasts of all the voxels in the scattering volume V . We

would like to constraint those updates such that if two voxels belong to the same

tissue type, or equivalently, to the same region, the update of the properties of the

two voxels should be similar (assuming we start with a homogeneous background).

This inspires solving an augmented system of equations, which in addition to solve

the electric field equations, includes equations of the form −xi + xj = 0 if voxels i

and j are in the same region.
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Let us define this augmented system of equations asA′x = b′ whereA′ = [A|λM]T ,

b′ = [b|0]T , and M is of the form

M = ‖A‖ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 · · · 0 0 0 0 · · ·
−1 0 1 0 · · · 0 0 0 0 · · ·
−1 0 0 1 · · · 0 0 0 0 · · ·
...

...
...
...
. . .

...
...
...
...
. . .

0 0 0 0 · · · −1 1 0 0 · · ·
0 0 0 0 · · · −1 0 1 0 · · ·
0 0 0 0 · · · −1 0 0 1 · · ·
...

...
...
...
. . .

...
...
...
...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

if the first N voxels up to the vertical line are in one region, and the remaining voxels

are in a second region. The norm of A is a scaling factor.

Note that this is an overdetermined system of equations and therefore it is likely to

not have a solution that satisfies all equations, especially since in reality the tissues

are heterogeneous. Therefore we solve this system of equations using conjugated

gradient least square error minimization, which finds the solution that minimizes the

error:

‖Ax− b‖2 + λ2‖Mx‖2. (3)

We use the parameter λ to set the weight of the spatial prior constraints against

the electric field matching equations. A large λ will put a large weight in ensuring

the difference between two voxels in a region is small, and therefore will not allow

variations of the properties within each region, while a small λ will give more impor-

tance to the matching of the electric field equations and the spatial prior constraints

will result in soft constraints. As seen in equation 3, the matrix M is normalized so

that a λ = 1 puts approximately equal importance to the matching of the electric

field equations and the spatial prior constraints. A λ > 1 will give more importance
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to the spatial prior constraints, and a λ < 1 will give more importance to the electric

field equations.

To regularize the solution to the problem we terminate the conjugate gradient least

square error minimization early. However, DBIM-SP needs less regularization than

conventional DBIM because the spatial prior constraints help regularize the solution.

3. Models

3.1. Breast phantoms

We tested the algorithm on three numerical breast phantoms: a homogeneously

dense phantom, a heterogeneously dense breast phantom, and a scattered fibroglan-

dular breast phantom. We obtained the herogeneously dense breast phantom (Class

3, ID number 062204) and the scattered fibroglandular breast phantom (Class 2,

ID number 010204) from the University of Wisconsin repository UWCEM Reposi-

tory [online], and created the locally homogeneous phantom based on the Class 3

phantom. The locally homogeneous phantom is a thresholded version of the Class

3 phantom, which assumes the phantom is composed only by homogeneous adipose

tissue and homogeneous fibroglandular tissue. Figure 1 shows the distribution of the

properties of the three phantoms used.

The frequency dependent complex permittivities of the tissues in the phantoms

were modeled using single-pole Debye models as in Shea et al. [2010]. Shea et al.

[2010] fitted single-pole Debye models to measured data from Zastrow et al. [2008]

for the properties of tissues in the interior of the breast and from Gabriel et al. [1996]
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for the properties of the skin, on the frequency range of 0.5-3.5 GHz. The skin was

considered to be homogeneous and was given a thickness of 2 mm.

3.2. Simulation set-up

The simulation setup consisted of an array of forty dipoles surrounding different

breast phantoms, all immersed in a lossless medium (εr). The dipoles were positioned

vertically (z polarized) and were arranged in a cylindrical surface into five coronal

rings surrounding each breast phantom, with a minimum distance of 1 cm to the

skin surface of the phantom. The rings were positioned equally spaced along the

axial extent of the phantom, and they were rotated with respect to adjacent rings to

maximize the distance between the dipoles.

Fields were simulated using the FDTD method, taking each dipole as a source

and observation points. FDTD simulations were run individually for each source,

and electric field measurements were recorded at the remaining dipoles. A mod-

ulated Gaussian pulse was used to excite the dipoles, and the measurements were

transformed to the frequency domain and recorded at 1, 1.5, 2, and 2.5 GHz.

For the simulation of the acquisition of the measurements, we used FDTD in a

0.5 mm grid. To calculate the Green’s function and the incident fields inside the

imaging region in each iteration, we discretized the setup further to a 2 mm grid.

The properties of the immersion medium, the properties of the skin, and the location

of the phantoms were considered known, and therefore in each iteration only the

properties in the interior of the phantoms were updated.
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3.3. Spatial priors

Figure 2 shows the two regions used as spatial prior in the DBIM-SP for each phan-

tom. The black region corresponds to adipose tissue and white region corresponds

to fibroglandular region. The regions were formed by using a threshold on the phan-

tom’s properties that would give us an appropiate separation of the two tissue types

(the threshold was a static relative permittivity above/below 18).

Note that because the data acquisition takes place in a 0.5 mm grid, and the

reconstruction in a 2 mm grid, the spatial prior regions do not match the phantom

exactly.

4. Results

4.1. Locally homogeneous phantom

As presented in the models section, the locally homogeneous breast phantom con-

sists of two distinct homogeneous tissues: adispose and fibroglandular. Figure 3

shows the dielectric properties of the two tissues across the frequency range of in-

terest, along with the estimation of these properties using DBIM-SP with a large λ

(λ = 5). A large λ was chosen to minimize variations of the properties inside each

region allowing us to assess the accuracy of the estimation of the properties. We

can see that the estimation of the relative permittivity and effective conductivity is

accurate for all frequencies using DBIM-SP, both for the adipose and fibroglandular

tissues.
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4.2. Heterogeneously dense breast phantom

Figure 4 shows coronal, sagittal, and axial views of the relative permittivity at 1

GHz of the class 3 breast phantom (first row) and three different reconstructions for

a 30 dB SNR: conventional DBIM (second row), DBIM-SP with large λ (λ = 50),

and DBIM-SP with a small λ (λ = 0.5). The reconstruction with conventional DBIM

suffers from blurred edges between the different tissues and poor property estimation,

especially underestimating the relative permittivity of the fibroglandular tissue. In

contrast, DBIM-SP preserves the edges between the different tissues, and is more

accurate in the estimation of the properties. When using a large lambda (third

row), no variation of the properties is allowed in each region, and the reconstruc-

tion consists of two locally homogeneous regions, each with properties close to the

average properties of the tissues in the original phantom (average εr at 1GHz of phan-

tom/reconstruction: 6/5 in adipose and 43/45 in fibroglandular tissue). When using

DBIM-SP with a small lambda (fourth row), the boundaries are still well preserved

between the tissues, but the reconstruction captures some of the heterogeneity of the

tissues. We can appreciate this more clearly in Figure 5, which shows cumulative

distributions of the properties of each region (plot (a) shows adipose region, and plot

(b) shows fibroglandular region) for the original phantom, conventional DBIM, and

several reconstructions using DBIM-SP with different values of λ.

In Figure 5 we can clearly see how DBIM overestimates the relative permittivity

of the adipose tissue and underestimates the properties of the fibroglandular tissue.

Also, note that cumulative distributions for DBIM are very smooth and flat compared

D R A F T March 23, 2015, 8:51pm D R A F T



NEIRA ET AL.: 3D MICROWAVE BREAST IMAGING WITH SPATIAL PRIORS 13

to the cumulative distribution of the properties of the original phantom. This is

because DBIM is smoothing the variation of the properties inside the imaging region

and the boundaries between different tissue types are blurred. By inspecting the

cumulative distributions of the reconstructions using DBIM-SP we can see the effect

of different values for λ. In particular note that a λ = 50 results in no variation inside

each region, and as we decrease λ variations inside each region are allowed, until for

a λ = 0.05 the reconstruction performs similar to DBIM.

Figure 6 and Figure 7 show the cross sections and cumulative distributions of the

relative permittivity at 1 GHz of the phantom and the reconstructions when the

measured fields have a low SNR (SNR= 10 dB). Note that the reconstruction using

DBIM completely breaks down at this level of noise (Figure 6, second row), while

DBIM-SP continues to perform well. The cumulative distribution of DBIM is nearly

flat at high noise, while the performance of DBIM-SP barely changes compared to a

low level of noise, even small values of λ.

The results for the Class 2 scattered fibroglandular breast phantom show a similar

performance. This phantom has larger volume than the Class 3 phantom, and consists

of mostly adipose tissue with a few scattered regions of fibroglandular tissue. DBIM-

SP estimates the average properties of the tissues accurately and when using a small

λ, heterogeneity can be captured.

4.3. Errors in prior information

In this section we provide the setup and results for how DBIM-SP performs when

the prior information is not exactly correct. Up to now we have only considered a
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mismatch given by the discretization of the imaging region. Now we will considered

shifts in the spatial prior. Viewing the phantom from the top (coronal view), we

will consider shifts to the right and to the left of the fibroglandular region in the

DBIM-SP reconstructions of the class 3 phantom (heterogeneously dense), using a

small λ for the spatial prior constraints.

Figure 8 shows coronal cross sections of the class 3 phantom (first row) and its

reconstructions using DBIM-SP. The second row shows the reconstruction with the

correct location of the fibroglandular region in the prior, the third row uses a prior

which has the fibroglandular region shifted 4 mm shift to the right, and the fourth

row uses a prior that has the fibroglandular region shifted 4 mm shift to the left.

The second and third columns show the reconstruction of just the adipose tissue and

fibroglandular tissue. Note that when the location of the spatial prior is correct, we

obtain the result previously shown in Figure 4, the boundaries are well preserved

and the estimation of the average properties in each region is accurate, while still

capturing some of the heterogeneity in each region. When shifts in the priors are

introduced, the estimation of the properties tries to compensate for the errors in the

prior, both by introducing variations of the mismatched tissues inside each region

and changing the average properties of each region. In the third row (prior shifted to

the right) we see that the estimation of the left edge of the fibroglandular region is

increased compared to when there were no errors. Also, the estimated properties of

the adipose tissue surrounding that edge are higher. This is trying to compensate for

the fact that that is fibroglandular tissue in the phantom. In the fourth row (prior
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shifted to the left) we can see a similar effect: the left edge of the fibroglandular

region has lower properties, because it corresponds to adipose tissue in the phantom.

Table 1 shows the average properties of the fibroglandular and adipose tissues in the

phantom and in the reconstructions: conventional DBIM, DBIM-SP without errors

in the prior, and DBIM-SP with different amounts of errors/shifts in the prior. An

interesting result is that the estimation of the average properties of each tissue type

is still accurate for small errors in the prior. Also note that DBIM-SP with errors

in the prior performs better than DBIM at estimating the average properties of each

tissue for up to a 6 mm error in the prior.

5. Discussion and Conclusions

The implementation of the DBIM-SP in 3D was possible because the method uses

sparse matrices, which makes possible to store and perform mathematical operations

with the data efficiently. The number of unknown voxels in each phantom was on

the order of 40,000 for the locally homogeneous and heterogeneously dense phantoms

(Class 3), and of 65,000 for the scattered fibroglandular phantom (Class 2), which

results in 120 thousand and 195 thousand unknowns respectively (three unknown

Debye parameters per voxel). Therefore, the matrix M in DBIM-SP has dimensions

close to 120 thousand and 195 thousand rows and columns, respectively for each

phantom. Storing and operating these matrices is achievable because they are highly

sparse (they only have two non-zero elements in each row). This characteristic is not

present in the spatial prior algorithms presented in [Golnabi et al., 2013a, b; Meaney
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et al., 2013], and we see this as a clear benefit of our algorithm, which made the

extension to 3D feasible.

The method performs substantially better than the conventional DBIM at esti-

mating the average properties of the tissues in the phantoms. In fact, it achieves

almost exact property estimation when the phantom consists of locally homogeneous

tissues. We also saw that the estimation of the average properties is good even in the

presence of noise for all phantoms and even when there were relatively large errors

in the spatial prior regions.

By controlling the parameter λ we allowed for different levels of variations in the

estimated properties inside each region. In the plots of cumulative distributions of

the actual and estimated properties of the phantoms, we saw that a large λ acted as

a hard constraint, and that by decreasing λ the estimation of the properties began

to follow the heterogeneity of the actual properties of the phantoms. In other spatial

prior algorithms that implement soft constraints Golnabi et al. [2011], the parameter

that sets the weight of the spatial prior constraints is linked to the regularization of

the problem, and therefore the solutions diverge for very small values of the parameter

making it not possible to obtain a significant amount of variation inside each region.

In the DBIM-SP method, a tiny λ will perform like conventional DBIM, and several

different amounts of variation can be obtained between DBIM and the hard constraint

by choosing intermediate λ’s. However, the variations inside each region result to be

very smooth. Further research in the proper choice or adaptive choice of λ could give

us results with even higher resolution.
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Allowing variations inside each region is also of special importance to handle errors

in the prior. We saw that when there are errors in the location of the spatial prior re-

gions the algorithm compensates the error by correcting the estimation of the average

properties in the regions, and also compansates for the errors by raising/lowering the

properties in the parts of the regions that are mismatched with the actual phantom.

It would be interesting to look at the possibility of adapting the spatial prior regions

if this effect becomes present in the estimation of the properties.

The DBIM-SP compensates in very simple and intuitive ways for errors in the prior,

and therefore we can easily predict ots performance when there are other types of

errors in the prior information. For example, if there is we set a false inclusion as a

third region immersed in the adipose tissue, the method will still image it as adipose

tissue, as it will estimate its properties to be close to the average properties of the

background at that location. If we create a false inclusion in the adipose tissue that

is linked to the fibroglandular region (so we still only have 2 regions) the algorithm

will change the average properties of each region to compensate, and if a small λ is

chosen, it will also lower the estimated properties of the false inclusion compared to

the average of that region.
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Figure 1. Distribution of dielectric properties of breast phantoms. (a) Locally ho-

mogeneous phantom, (b) heterogeneously dense phantom (Class 3), and (c) scattered

fibroglandular phantom (Class 2).

Figure 2. Spatial prior regions considered for each phantom. Black corresponds

to adipose region, and white corresponds to fibroglandular region. (a) Regions for

locally homogeneous and heterogeneously dense phantoms. (b) Regions for scattered

fibroglandular phantom.
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Figure 3. Comparison of the actual (solid) and DBIM-SP reconstructed (dashed)

dielectric properties in the adipose (light/dark blue) and fibroglandular (red/orange)

tissue regions in a locally homogeneous breast phantom.
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Figure 4. Coronal (left column), sagittal (middle column), and axial (right column)

cross-sections of the relative permittivity at 1 GHz for the (a) Class 3 breast phantom,

(b) standard DBIM reconstruction, (c) DBIM-SP reconstruction (λ = 50), and (d)

DBIM-SP reconstruction (λ = 0.5). All reconstructions were obtained for 30 dB

SNR. (Axes in cm.)
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Figure 5. Cumulative distributions of the relative permittivity at 1 GHz for Class

3 reconstructions with 30 dB SNR. (a) Adipose tissue. (b) Fibroglandular tissue.
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Figure 6. Coronal (left column), sagittal (middle column), and axial (right column)

cross-sections of the relative permittivity at 1 GHz for the (a) Class 3 breast phantom,

(b) standard DBIM reconstruction, (c) DBIM-SP reconstruction (λ = 50), and (d)

DBIM-SP reconstruction (λ = 0.5). All reconstructions were obtained for 10 dB

SNR. (Axes in cm.)
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Figure 7. Cumulative distributions of the relative permittivity at 1 GHz for Class

3 reconstructions with 10 dB SNR. (a) Adipose tissue. (b) Fibroglandular tissue.
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Figure 8. Coronal cross-sections of the relative permittivity at 1 GHz for the

(a) Class 3 breast phantom, (b) DBIM-SP reconstruction without errors in prior, (c)

DBIM-SP reconstruction with 4 mm error in prior to the right, and (d) DBIM-SP

reconstruction with 4 mm error in prior to the left. The middle and right columns

show only the adipose tissue and fibroglandular tissue regions, respectively. All re-

constructions were obtained for 30 dB SNR and λ = 0.5. (Axes in cm.)
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Table 1. Average relative permittivity of tissues at 1 GHz

Phantom DBIM DBIM-SP no errors

Adipose 5.9 12.8 5.0

Fibroglandular 42.9 28.2 45.3

DBIM-SP with prior shifted to the left (L) and right (R)

8 mm L 6 mm L 4 mm L 2 mm L 2 mm R 4 mm R 6 mm R 8 mm R

Adipose 10.8 10.8 10.4 8.2 8.3 10.4 11.0 11.0

Fibroglandular 26.2 28.0 31.3 37.9 37.2 31.5 28.6 26.4
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