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I. Introduction

The studies on the scattering of electromagnetic fields by a dielectric cylinder have
been an important research subject for a variety of applications in the area of antennas
and propagation [1]-[6]. The scattered fields by a dielectric cylinder have been calculated
numerically by applying the eigenfunction representation, the method of moment, and
so on. However, such methods may not be effective for the problems when the radius of
curvature is sufficiently larger than the wavelength.

In this study, a time-domain asymptotic analysis is discussed for the scattered electro-
magnetic fields when the cylindrical wave radiated from a magnetic line source is incident
on a dielectric cylinder. We assume the Gaussian-type modulated pulse source whose
spectrum is distributed in the high-frequency domain. The time-domain scattered field
solutions derived in this paper are applicable in the transition regions near the geometrical
boundaries, produced by the incident ray on the dielectric cylinder from the tangential
direction, and near the caustics, produced by the family of the reflected ray group on
the concave side of the dielectric cylinder. Comparisons of the time-domain asymptotic
solution with the reference solution calculated numerically from a combination of the
eigenfunction representation and the First Fourier Transform(FFT) code confirm the va-
lidity and the utility of the proposed time-domain asymptotic solution.

II. Frequency-Domain Asymptotic Solutions
1. Formulation and scattering phenomena
Fig.1 shows the dielectric cylinder with the radius of curvature a and the dielectric
constant €5, and the cylindrical coordinate system (p, ¢, z) and the cartesian coordinate
system (z,y, z). When the dielectric cylinder is illuminated by an incident wave radiated
from a magnetic line source Q(pg, ¢o), the frequency-domain scattered magnetic field
observed at the point P(p, ¢) can be obtained from the eigenfunction expansion [1] [2].
When the Watson transform [1],{5),[6] is applied to the eigenfunction representation,
one may obtain the integral representation for the scattered field. Various high-frequency
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solutions can be derived from this integral representation. In Fig.1, the scattering phe-
nomena are shown schematically. The observation region in the surrounding air is di-
vided into the three regions I-III, in this example, by the geometrical shadow boundaries

0-7803-7846-6/03/$17.00 ©2003 IEEE


Teh-Hong Lee
0-7803-7846-6/03/$17.00 ©2003 IEEE


SB;—SB;. The shadow boundary SB; is produced by the direct ray Q@ incident on
the dielectric cylinder from the tangential direction. The SB; is produced by the re-
fracted ray Q;Q4, excited by the tangential ray QQ;, at the point Q4. Similarly, the
S Bj is produced by the refracted ray Q4Q)s, refracted at @2 and reflected on the concave
boundary at Q4. The similar scattering phenomena are observed within the same region
divided by the shadow boundaries. For example, the direct ray Q) Ps, the reflected ray @,
the refracted-refracted-surface diffracted ray @ ( Q@ = Q2 = Q4 = @5 — P3 ) and the
transmitted-reflected-transmitted ray ® (Q — @1 = R — Q¢ — Ps ) are observed at the
point P; located in the region III.

2. Modified uniform GTD(UTD) solution near the SB,

The surface diffracted ray QQ2 —Q@2Q3— Q3 P: observed in the transition region (
shaded region ) near the shadow boundary SB; and in the region II ( see Fig.1 ) can be
calculated from the following modified UTD solution:
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where A, (Q23) denotes the coefficient to modify the conventional GTD’s diffraction
coefficient D, (Q2,3) and Wi(= Ai — iBi) the Airy function. The eigenvalues o,,, and
corresponding 7,,, and v, are calculated from the following equations.
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3. Transmitted fields solution near the SB,

When the observation point P is located in the transition region 2 (see Fig.1), the
geometrical ray solution for the transmitted ray (@ — @1 — R — P:) can not be
applied since the Debye’s approximations for the cylindrical functions used to derive
the conventional transmitted ray are not applicable for this case. The transmitted field
solution may be calculated from the following representation:
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where § = £Q20Qs and 2¢ = £Q20Q4, measured in the counterclockwise direction, and
6, = £0Q2Q, is the critical refraction angle. The integral in (9) can be calculated very
quickly by deforming the integration contour and by performing the numerical integration
applying the Simpson formula.

4. Ray solution near the caustic C;,C>

When the observation point is located at P; in the region III, the geometrical ray @ is
observed ( see Fig.1 ). However, a family of these ray group constructs the caustic C;C»
as shown in Fig.2. Thus, the conventional geometrical ray solution can not be applied
in the transition region near this caustic. The asymptotic solution obtained from the
integral representation by taking into account the two adjacent first-order saddle points
is represented as follows.
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where T13(21)(w;) denotes the transmission coefficient from the air to the dielectric cylin-

der(from the dielectric cylinder to the air) and Rz;(w;) the reflection coefficient at the
point R (see Figs.1 and 2) on the concave boundary [If,[ﬁ]. These coefficients agree with
the Fresnel transmission coefficients and the reflection coefficient, respectively, if the sad-
dle points w;, j = 1,2, are not located near w/2. The two saddle points w;,j = 1,2, are
obtained from the saddle point equation:

|6 — do| =4(m/2 — sin™ (ky /k2) sinw;) + (7/2 — sin~(a/po) sin w;)
+ (7/2 - sin™Y(a/p) sinw;) — 2(7/2 — w;) (16)

III. Time-Domain Asymptotic Solutions
We will apply the Gaussian-type modulated pulse source s(t) (see Fig.3) defined as
s(t) = {U(t) — U(t — 2t0)} exp{—iwo(t — to) ~ (¢ — t0)*/(4d*)} (17)
where U(t) denotes the unit step function.

When a dielectric cylinder is illuminated by the incident wave excited by the pulse
source in (17), the time-domain asymptotic solution y(t, p, 9}(= y(t)) for the scattered
field can be obtained from the inverse Fourier transform of the product of the frequency-
domain scattered field solution H?(w) and the frequency spectrum S{w) of the source
function s(t) in (17) as follows,

y(t) = 51; /_ " H (0)S(w) exp(~iwt)dw. (18)

The frequency-domain scattered field solution H?{w) consists of the several terms
H, i(w)(z = 1,2,---) such as the reflected ray @ (i = 1), the surface diffracted ray @
(7 = 2), the reflected ray @ (i = 3), and so on (see Fig.1). Each term H, ;(w) constructing
the total response waveform can be expressed as H, ;(w) = A;(w) exp(iwL;/c1), where ¢;
denotes the speed of light in the air, L; the distance parameter, and A;(w) the slowly
varying amplitude as the function of w. When S(w) and H, ;(w) are substituted into the
inverse Fourier transform in (18), one may obtain

¥i(t) = (d/v/7) exp{—iwoT; — T? /y(2d)2}f,~(d) , Ti=t—1ty—L;/c (19)
Ii(d) = /_ ) Fy(w) exp{~d*Gi(w)}dw , Fi(w) = Ai(w)Relerf{B(w)}] (20)
di(w) = {w — wo +iT:/(2d1)}? , B(w) = (to/2d)? — id(w — wp) (21)

The integral in (20) can be evaluated asymptotically assuming d2 >> 1. Then, the
time-domain asymptotic solution is obtained from the following representation:

Yi(t) = s(t — Li/c1) Ai(ws ;) Re[B(ws 5)] , wai = wo — iT3/(2d?) (22)

IV. Numerical Results and Discussions

In Fig.4, we have compared the frequency-domain asymptotic solution in Sec. II with
the exact solution calculated from the eigenfunction representation. The scattered field
magnitude curve is drawn as the function of the angular distance |¢— @o|. The asymptotic
solution (solid curve) agrees excellently with the exact solution (dotted curve).
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Fig.5 Transmitted pulse wave observed Fig.6 Time-domain scattered fields observed
at P,(6.0,265°) near the SB, atP,( 6.0, 339.8°) near the caustic C,C,
(p=6.0,|¢ - @,/ =269.96") in the (0=6.0, !¢ - ¢, =340") in the region III
region II.

Fig.5 shows the transmitted pulse wave observed near the shadow boundary SB; in the
region II (see Fig.1) when the pulse wave in (17) is incident on the dielectric cylinder. The
asymptotic solution calculated by using (22) and (8) a%rees very well with the reference
solution calculated numerically from (18) by using the FFT. The conventional geometrical
ray solution shown by the bold dotted curve shows the large error near the SgB2.

The total time-domain scattered field observed near the caustic C1C» in the region
IIT (see Figs.1l and 2) is shown in Fig. 6. The response waveforms @ ~ @ shown in
Fig.6 correspond, respectively, to the reflected ray ®, the surface diffracted ray @, and
the reflected ray @ in Fig.1. The response waveform @ in Fig.6 is not shown in Fig.1 in
order to avoid the crowded figure. The asymptotic solution agrees excellently with the
reference solution calculated numerically.

V. Conclusion

We have derived the time-domain asymptotic solutions for the scattered fields by the
dielectric cylinder. The new solutions can be applied near various kinds of the geomet-
rical boundaries and the ray caustics. By comparing the asymptotic solutions with the
reference solution calculated numerically, we have confirmed the validity of the proposed
asymptotic solution and clarified the scattering phenomena by a dielectric cylinder.
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