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Abstract: The precorrected-FFT method is applied to the fast solution of the volume integral 
equation for lossy, inhomogeneous dielectric bodies. The volume of the dielectric body is 
discretized into tetrahedron elements and the SWG basis functions are employed to expand the 
unknown electric flux density. The basis functions are then projected onto a uniform grid 
surrounding the nouniform mesh, enabling the FFTs to be used to speed up the matrix-vector 
multiplies in the iterative solution of the matrix equation. The resultant method has a 
computational complexity and memory requirement of ( )NNO log  and ( )NO  respectively. 
     

1. INTRODUCTION 
    The volume integral equation (VIE) in conjunction with the method of moments (MoM) is a 
powerful tool for the analysis of electromagnetic scattering from dielectric bodies of arbitrary 
shape and inhomogeneity. However, the traditional MoM suffers from tremendously high 
computational cost and memory requirement as the electrical size of the scatterers increases. 
Recent development in fast algorithms has alleviated this problem to some extent. The most 
widely used approach to solve the VIE is the conjugate gradient fast Fourier transform 
(CGFFT) [1]. This method requires the volume of the object to be discretized into uniform 
hexahedral cells in order to use the Toeplitz property of the coefficient matrix. Thus when 
modeling an arbitrary geometry, very dense cells are required which will result in a large 
number of unknowns and the unavoidable staircase geometry error will degrade the accuracy 
of the final solution. To overcome this drawback, the multilevel fast multipole algorithm 
(MLFMA) has been applied to solve the hybrid volume-surface integral equation (VSIE) for 
composite conducting and dielectric objects [2]. In this paper, we apply a precorrected-FFT 
based algorithm to efficiently solve the volume integral equation. Unlike the CGFFT, the 
present approach uses the more flexible tetrahedral mesh to model the object. Then, the entire 
object is enclosed in a uniform rectangular grid and all the basis functions are projected onto 
the surrounding grid points. By such a procedure, the interactions between the point sources 
on the grid points are described by three-dimensional convolutions which can be computed 
rapidly by FFTs. In this technique, the density of the uniform grid depends on the requirement 
of the solution accuracy and can retain a desired coarse level even if a complex structure is 
analyzed. This technique offers good flexibility to model arbitrarily shaped structures while 
keeping the efficiency of the FFTs.  
 

2. FORMULATION 
2.1 The Formulation and Discretization of the Volume Integral Equation 
    Consider a lossy, inhomogeneous dielectric body V  illuminated by an incident field iE . 
Assume that the material is dielectric ( 0µ=µ ) and has complex dielectric constant of 

ωσ−εε= )()()( rrr jε r 0 , where rε  and σ  are the relative permittivity and conductivity at 
position r . By invoking the equivalence principle, the dielectric body is removed and 
replaced by a volume polarization current J . According to the fact that the total electric field 
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is the sum of the incident field and the scattered field due to J , we can obtain the following 
volume integral equation, 

)()( rrArErrD i Φ∇−ω−=ε j)()()/(                                      (1) 
where )(rA  and )(rΦ  are the vector and scalar potentials produced by the volume current J , 
and J  is related to the total electric flux density by )) 0 rrDrrJ (/)()(()( εε−εω= j . 
    To solve Eqn. (1), the volume V  is discretized into a number of tetrahedral elements, in 
each of which the dielectric properties are approximated as constant. The unknown electric 
flux density can be represented by the volumetric SWG basis functions [3]: 
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where nD  represent the unknown expansion coefficients, N  denotes the number of faces that 
make up the tetrahedral model of V . Substituting (2) into (1) and applying Galerkin’s testing 
procedure yield a NN ×  matrix equation of the form 

ESD =                                                              (3) 
The elements of the coefficient matrix S  and the excitation vector E  can be derived from (1) 
and the expressions are omitted here. But for easier description of the following P-FFT 
approach, we give the expressions of the contributions to A  and Φ  from a single basis 
function, which are needed in the computation of the elements of S , 
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The definitions of na , ±
nρ , ±

nV  and ±κ n  can be found in [3]. Note that the third term in Eqn. (5) 
corresponds to surface charges which only exist on the interfaces of different media.  
 
2.2 The Precorrected-FFT Solution of the VIE 
    The precorrected-FFT method has been applied to solve the surface integral equations for 
electromagnetic scattering problems [4]. It can also be applied to the solution of the volume 
integral equations with some modifications. The method separately considers near- and far- 
field interactions when evaluating a matrix-vector multiplication. To compute far-field 
interactions, sources supported by the scatterer are projected onto a regular grid by matching 
their vector and scalar potentials at some given test points to guarantee the approximate 
equality of their far fields. Next, the potentials (fields) at other grid locations produced by 
these grid-projected sources are evaluated by a 3-D convolution. Knowledge of these fields 
permits the computation of fields on the scatterer through interpolation. The projection and 
interpolation operators are represented by sparse matrices, while the convolution can be 
effected using an FFT. Unfortunately, the near fields radiated by these grid currents do not 
match those radiated by the original sources. Therefore, near-field interactions are evaluated 
directly, and corrected for errors introduced by the far-field operator. The implementation of 
the projection step for the VIE will be described in the following paragraph and the 
convolution, interpolation, and precorrection steps are omitted due to space limitation since 
they are similar to those for the SIE, although more complicated.  
    To implement the P-FFT method, the entire object is enclosed in a uniform rectangular grid 
which is further subdivided into small cells with each cell consisting of 3p  grid points and 
containing only a few tetrahedral elements. Assume the thn  volumetric SWG basis function 

nf  is contained in a given cell k . For the projection of the electric charges (corresponding to 



 

 

nf⋅∇ ), enforcing the scalar potential produced by the electric charges at the 3p  grid points to 
match that produced by the original electric charge distributions on the two tetrahedral 
elements and the common triangular patches (if applicable) at cN  test points, we can obtain 
the projection operator for the divergence operator of the nth basis function 

( ) [ ] nptgtnkW ,, PP +=                                                     (6) 

where npt ,P  denotes the thn  column of ptP  and [ ]+gtP  indicates the generalized inverse  of 
gtP . gtP  represent the mappings between the grid charges and the test-point potentials and 
ptP  represent the mappings between the actual charge distributions and the test-point 

potentials, respectively, given by   
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where t
qr  and lr  are the position vectors at the thq  test point and the thl  grid point, 

respectively, and lq̂  is the charge at the thl  grid point. For any basis function n  in cell k , 
this projection operator generates a subset of the grid currents q) . The contribution to q̂  from 
the charges in cell k  can be computed by summing over all the actual charges in this cell, i.e. 

  ∑=
n

nDnkq ),(W)                                                        (9) 

Following the above procedure, we can project the charges nD fn ⋅∇  onto the 3p  grid points 
surrounding cell k . It should be noted that the projection of the volume and surface charges 
are performed simultaneously in one step, which is a convenient and efficient scheme 
developed for the volume integral equation. Similarly, by matching the vector potential due to 
the 3p  grid currents and that due to the actual volume current distributions at the test points, 
we can obtain the projection operators for the electric currents.  
 

3. NUMERICAL RESULTS 
    Consider a 000 6015 λ×λ×λ .  rectangular dielectric box with a relative dielectric constant of 

30751 .. jr −=ε . The volume is discretized into 18,000 tetrahedrons, leading to 37,720 
unknowns. The bistatic RCS obtained by the P-FFT method in conjunction with the VIE and 
SIE respectively are shown in Fig.1 and are also compared with the AIM solution of the SIE 
[5]. Good agreements are observed for both polarizations, validating the present method.  
    The second example is another rectangular dielectric box with the size of 

000 2500253 λ×λ×λ ...  and the dielectric constant of 0903 .. jr −=ε . The volume is divided into 
18,000 tetrahedrons, yielding 37,720 unknowns. The monostatic RCS θθσ  calculated by the P-
FFT method based on the VIE and SIE are compared in Fig.2 and the iteration numbers versus 
the incident angles are also shown in Fig.3. It is observed that number of iterations required to 
achieve a 310−  residual for the VIE are only a quarter of that for the SIE. 

 
4. CONCLUSIONS 

    The precorrected-FFT method has been applied to solve the volume integral equation for 
the scattering from dielectric objects with arbitrary shape and inhomogeneity. The application 



 

 

of the P-FFT significantly reduces the memory requirement and computational complexity of 
the MoM solution of the VIE. Although tetrahedral elements are used to discretize the 
dielectric volume in this paper, other elements such as the curvilinear tetrahedron can also be 
used without complex modifications, which makes the present method a powerful tool for the 
solution of the VIE.  
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                            (a) θθ  polarization                                                    (b) φφ polarization 

  Fig.1. Bistatic RCS of a 000 6015 λ×λ×λ .  dielectric rectangular box 
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Fig.2 Monostatic RCS θθσ  of a 000 2500253 λ×λ×λ ...            Fig.3 Iteration numbers needed by the   
         dielectric rectangular box                                                 GMRES solution of the VIE and SIE  
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