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1 Introduction

Patch antennas and other printed circuit antennas are widely used in the microwave
domain. From a performance point of view the height of the radiating element over
the ground generally needs to be small compared to the wavelength in free space. If
the antenna is separated from the ground plane by a dielectric layer, its performance
can be poor because a considerable part of the radiated power can be lost due to the
excitation of surface waves in the substrate. Recently, it has been proposed to replace
conventional dielectric substrates with so-called high-impedance surfaces (HIS) to
obtain a metal-backed substrate that potentially offers constructive interaction with
the antenna [1, 2, 3]. These surfaces are basically periodical structures of planar
conducting patches separated by the slots or complimentary arrays of slots in metal
planes. For arrays of patches positioned in close proximity to a solid metal plane as
in [1], periodically positioned metal pins are introduced to prevent electromagnetic
waves from propagating inside the substrate. Because of the specific geometry, this
structure is sometimes referred to as mushroom array. Suggested applications in
antennas and microwave filters [2] also utilize the existing stop bands for waves
propagating along these surfaces.
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Figure 1: TM and TE plane
waves incident on a mushroom
layer.

In this paper we report our results on analyti-
cal modeling and experimental investigations of
mushroom surfaces excited by obliquely incident
plane waves. The geometry of the problem is il-
lustrated by Figure 1. The results show the role of
vias connectors leading to stable reflection prop-
erties for all incidence angles for the TM polar-
ization when the pins are excited. Furthermore,
we look at novel geometries of the patch array [4]
that improve the main characteristics of HIS, po-
tentially increasing the bandwidth and providing
a more stable frequency dependence of the surface
impedance versus the angle of incidence. Our ap-
proach is an extension of the analytical dynamic model of mushroom arrays [5]. The
analytical results are compared with experimental data.
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2 Analytical model

Let us first consider a planar array of patches in free space. If the grid period
is smaller than the wavelength, its electromagnetic properties can be described in
terms of the grid impedance Zgrid which connects the averaged electric field in the
grid plane and the averaged current density: 〈E〉 = Zg〈J〉. Consider a self-resonant
grid modeled by Zg positioned on the interface of a metal-backed dielectric substrate
which is periodically perforated by metal pins. The surface (input) impedance of
the whole structure Zi is the parallel connection of Zg and the equivalent surface
impedance of the substrate:

Zi =
ZgZs

Zg + Zs
. (1)

Figure 2: Self-resonant grids of planar metal
particles. Left: array of spiral-shaped patches.
Right: array of Jerusalem crosses.

This transmission-line approach
was successfully confirmed in
[5], where the full-wave interac-
tion with the ground was taken
into account and it was shown
that the corrections are small
for practical cases. In the the-
ory of self-resonant grids [6] it
was proven that if the cell size
is small compared to the wave-
length, the grid impedance (for
normal incidence) is close to
that of the series LC-circuit,
where L and C are the parame-
ters of a unit cell of the grid. We introduce impedances normalized to the free space
impedance η = 120π Ohm and write

Znorm
g = j

ωL

η

(
1− ω2

0

ω2

)
, (2)

where ω0 = (LC)−1/2 is the grid self-resonance frequency. Examples of self-resonant
grids are presented in Fig. 2. The normalized grid impedance for the TE-incidence
can be calculated as ZTE

g = Znorm
g / cos2 θ and for TM-incidence one has ZTM

g =
Znorm

g .

For the TE-incidence Zs is not affected by pins, and we obtain,

ZTE
s =

j√
ε

tan kzdH, (3)

where kzd = ω
√

ε− sin2 θ
√

ε0µ0, and H is the substrate thickness. For the TM-case
it can be approximately treated as the normalized surface impedance of a thin metal-
baked layer of a wire medium. The wire medium can be considered as a multi-wire
TEM transmission line. It was recently shown [7] that TM-polarized incident field
excites two eigenwaves in wire media. One is the TM-mode that has a stop band
at low frequencies. In our case that wave exponentially decays inside the substrate,
and we assume that its influence can be neglected. The only relevant solution is the
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Figure 3: Frequency dependencies of the reflection coefficient phase for a structure
with SSP (left part) and usual metal patches (right part).

TEM wave. Its propagation factor has two components: the normal to the interface
component is equal to the wavenumber in the dielectric matrix kd = ω

√
εε0µ0,

and the tangential component equals to that of the incident wave vector. So, the
substrate is a transmission line with the energy propagating strictly along z, and its
surface impedance does not depend on the incidence angle: ZTM

s ≈ j tan(kdH)/
√

ε.
The reflection coefficient can be easily found when one has obtained Zi:

RTE =
ZTE

i cos θ − 1
ZTE

i cos θ + 1
, RTM =

ZTM
i − cos θ

ZTM
i + cos θ

. (4)

As an example we have considered the structure [4] shown on the left of Fig. 2.
To calculate L in Znorm

g we have used analytical models with tabulated functions
from [8]. To calculate C we have considered the spiral-shaped patches as pieces of a
wire mesh and applied the known averaged boundary conditions to find the effective
capacitance of a piece of mesh. This approach is widely used in the theory of low-
frequency wire antennas with capacitive loading on the ends. We have compared
this self-resonant grid with arrays of simple patches used in mushroom structures.
A simple patch array has a capacitive impedance Zg = 1/jωC. The grid impedance
of the self-resonant grid contains an inductive part Zg = jωL + 1/jωC, but its
capacitance is smaller.

3 Results and discussion

In Fig. 3 we compare the frequency dependencies of the reflection coefficient phase
arg{RTM} for a structure with SSP (left part) and a MS (right part). The main
conclusion is that in case of the TM polarized incidence the input surface impedance
seen by the incident wave is no changed much if the incidence angle is changed, due
to the presence of vias connectors. In particular, the resonance frequency where the
surface behaves as the magnetic wall is practically independent from the incidence
angle. For the TE-case the dynamics of the frequency plots of the reflection phase
(with respect to the incidence angle) is the same for the structure with SSP and the
MS. The resonance frequency increases with increasing θ.

To validate our theory we have made experiments with a sample of a SSP structure.
The main parameters were as follows: substrate thickness H = 6.1 mm, permittivity
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Figure 4: Frequency dependencies of the reflection coefficient phase for a structure
with SSP. Left part: normal incidence. Right part: θ = 20o.

ε = 2.17, the array period D = 4.2 mm, the strip width w = 0.3 mm, the central
metal bit size ∆ = 1.5 mm. In Fig. 4 we present the results of comparison between
the theory and the measurements for the TM-incidence.
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