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1. Introduction 
 
Many real-world array systems can be decomposed into identical repeating cells, and in 
some cases multiple sets of like cells.  Take for example a flat rectangular plate that can 
be decomposed into a planar grid of smaller plates.  In much the same way, a finite array 
comprised of an arbitrary repeating cell, array decomposition can be used to greatly 
simplify and accelerate the storage and solution process [1].  Here this decomposition 
approach is extended to multiple cell structures for treating finite arrays consisting of 
multiple groups of like elements, such as finite arrays with an extended ground plane and 
radome of arbitrary periodicity.  While the decomposition approach cannot be applied to 
a completely general structure devoid of repeating features, often some portion of a 
structure can benefit from array decomposition.  Likewise, though a generalized approach 
can always be applied to analyze a structure with geometrical redundancies, exploitation 
of known redundancies typically leads to reduced storage and solution time.  Further, the 
portion of the problem that cannot be decomposed into repeating cells can itself be 
treated as a single-element array, or may be decomposed into many unique single element 
arrays.  A popular approach to large problems analysis is the Fast Multipole Method 
(FMM) [2].  In essence, FMM decomposes an arbitrary problem into a regular grid.  
However, in cases where geometrical redundancies exist, use of FMM alone is typically 
far slower than explicit decomposition [3, 4] of the pre-existing repeating features.  
Further, it is possible to combine FMM with the array decomposition method (ADM) as a 
hybrid approach [3] to best handle the repeating and non-repeating portions of a 
composite problem.   
 
In this paper, we introduce a multi-cell array decomposition method applicable to 
complex structures with repeating features.  With this method, we demonstrate that some 
common real-world structures can be decomposed into repeating cells for significant 
storage reduction, enabling us to analyze the coupling between several configurations of 
dual-polarized tapered-slot antenna arrays supported by a ground-plane. Measurement 
comparisons shall be presented.  For brevity, we refer to this analysis technique at the 
multi-cell array decomposition method (multi-cell ADM). 
 
2. Multi-Cell Decomposition Approach 
 
For an introduction to ADM, the reader is referred to [1].  Much like the conventional 
ADM, the multi-cell ADM is carried out on common dimensions.  In other words, for a 
single dimension, 12Z  is the same as 23Z  for sequential dimension numbering 
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( ).  Here, we will focus strictly on spatial or translational dimensions.  
A translational dimension is defined solely by a spacing parameter δ  and a direction .  
By this definition, dimensions can be differentiated by a unique spacing between 
elements, or by aligning an array in a different spatial direction.  In this way, complex 
systems can be constructed using multiple dimensions.  For systems sharing a common 
dimension, a self-system Toeplitz property in addition to a cross-system Toeplitz 
property for element interactions can be exploited to decompose the system.  An example 
of three systems sharing a common dimension is given in Figure 1.  Each system consists 
of an independent number of elements, denoted 

r̂

, but all three systems share a 
common rδ  and .  We define systems 1, 2, and 3 as having unknowns , , and , 
respectively.  In a conventional approach to this problem, the total matrix storage 
requirements would be .  This corresponds to the full system given 
in (1), though in general, the matrix layout would be different. 
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In (1), there are nine sub-systems, one for each intra-array coupling interaction, and one 
for each cross-coupling interaction between arrays.  Because these three systems share a 
common dimension, the sub-systems are all non-symmetric Toeplitz (i.e. 

).  Thus, each individual sub-system can be reduced from 

 storage down to O M 1) )M n nβ α+ − β .  This reduction corresponds 
roughly to the unshaded portion of the matrix in (1).  Further, the contribution of each 
sub-system to the matrix-vector product operation of the iterative solution process can be 
accelerated with the equivalent of n n  fast Fourier transforms (FFT) of length 

.   
 
Consider a composite finite array structure consisting of three unique cells (see Figure 2).  
The composite structure consists of a 6  horizontally polarized array, a 5  vertically 6



polarized array, and ground plane, decomposed into a 7 7×  grid.  The assembled 
structure is a dual-polarized tapered-slot antenna in an egg-crate configuration.  For this 
small configuration, the overall system storage can be reduced by 93% using the 
proposed multi-cell decomposition alone (larger systems have greater savings).   
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3. Example Simulation Results 
 
Next we proceed to employ the proposed multi-cell ADM to analyze the 2+ million 
unknown structure shown in Figure 3 (comparisons to measurements will be made for 
array-to-array coupling vs. scan angle at the presentation).  This composite structure 
consists of two 10  and two 1111× 10×  wideband tapered-slot antenna arrays, a ground 
plane, and surrounding shields.  This composite structure requires a total of 13 multi-
cells, though alternative decompositions can be made using multiple dimensions.  
Further, reuse of system resources can be accomplished by simply noting that many 
elements can be reconstructed by rotating cells.  A straight-forward decomposition 
approach with 13 multi-cells reduces the problem size down to 14GB, compared to an 
unmanageable 16 terabytes without decomposition (three orders of magnitude 
difference).  The electrically large wideband element alone takes 82MB to model using 
2400 FEM, 2600 BI unknowns ( ~ 0.13 1.4 10× × inches, 2-4GHz).   
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Figure 1. Illustration of dimensional decomposition. 
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Figure 2. Decomposition of composite finite array structure. 
 

 
Figure 3. Array coupling test geometry. 
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