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1 Introduction

In several applications it is important to solve a linear system of equations for
multiple right hand sides. Assume a dense linear system with N unknowns and
M right hand sides. With Gaussian elimination the solution time is O (N3)
for the factorization and O (MN2) for the substitution part. For integral
equations we can use fast matrix vector algorithms like the multilevel Fast
Multipole Method (MLFMM) [1] together with iterative methods to reduce the
solution time to O (KMN logN). Here, K is the average number of iterations
for one right hand side. When K and M are large the advantage of the fast
method is not so clear because of the large constant in front of the scaling. A
direct solver could be preferred in this case if the matrices fit into memory.
This is the reason we developed the Minimum Residual Interpolation method
(MRI) in [2]. MRI is efficient when the right hand sides depend smoothly on
a parameter. The advantage of MRI is the independence of the underlying
solution method and the ability to predict the residual without computing a
matrix vector product. Once enough right hand sides are solved, MRI can
predict the solutions to the remaining right hand sides.

In this paper the versatility of MRI is demonstrated. MRI is applied to
the solution of the equations in the Method of Moment (MM), the Physical
Optics method (PO) and the iterative Method of Moment - Physical Optics
hybrid (MM-PO) described in [3]. The PO part is formulated as a Galerkin
problem as in [3]. The MM part is handled with an iterative method that
uses MLFMM matrix vector multiplication [4]. The coupling between the two
regions is also handled with MLFMM. The iteration between MM and PO can
be viewed as an iterative block Gauss-Seidel method.

2 Minimum Residual Interpolation method

The systems of linear equations that should be solved are

Axi = bi, i = 1 . . .M, A ∈ CN×N , xi,bi ∈ CN . (1)

The residual is defined as ri = bi −Axi. An iterative method can solve the
equations such that ‖ri‖ ≤ ε for some ε.
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Assume that the solutions to m < M right hand sides are known and are
linearly independent. Let si, Sm, and Xm be defined by

Axi = bi − ri ≡ si, i = 1 . . .m, Xm = [x1 x2 . . . xm] , Sm = [s1 s2 . . . sm] .
(2)

Let the QR-decomposition of Sm be given by AXm = Sm = QSmRSm . Then,
one can compute a minimum residual solution such that [2]

x
(0)
m+1 = XmR−1

Sm
QH

Smbm+1, r
(0)
m+1 = (I−QSmQH

Sm)bm+1. (3)

If ‖r(0)
m+1‖ > ε the solution x

(0)
m+1 can be used in an iterative method as initial

guess.
In [2] we proved for the case of electromagnetic plane wave scattering that

‖r(0)
m+1‖ ≈ C (κd∆φ)m for some constant C. Here, κ is the wavenumber, d is

the size of the object and ∆φ is the difference in the spherical angle between
adjacent plane waves. In a plane, it means that when m ≈ κd/2 the residual
of the initial guess for any remaining right hand side is sufficiently small and
that no further iterations are needed in the iterative method. For a general
bi = b (φi) and φi = i∆φ a similar result was obtained.

3 MM-PO hybrid

Consider the case of electromagnetic scattering from a perfect electric con-
ductor (PEC). To find the equivalent currents on the scatterer we formulate
CFIE [1]. In the iterative MM-PO hybrid the scatterer is divided into a MM
region Γ1 where CFIE is solved and a PO region Γ2 where an approximation
to MFIE is solved. The PO approximation is obtained by assuming that the
double integral in MFIE is zero. The PO region is divided into two parts: the
lit region ΓL

2 and the shadowed region ΓS
2 where the electric current is assumed

to be zero. The RWG basis function for triangles is used to discretize the
problem. This leads to the equation

(
Z11 Z12

Z21 Z22

)(
I1

I2

)
=

(
V1

V2

)
. (4)

The matrices Zii correspond to self-interactions within the two regions while
Z12 and Z21 correspond to the interactions between the regions.

The solution to equation (4) is obtained from an iterative block Gauss-
Seidel method 




I
(k)
2 = Z−1

22

(
V2 − Z21I

(k−1)
1

)

I
(k)
1 = Z−1

11

(
V1 − Z12I

(k)
2

) (5)

where I(0) is given by MRI. Both equations are solved with iterative methods
that use I

(k−1)
i as initial guess. Convergence is usually achieved in a few itera-

tions. The matrix vector multiplications with Z11, Z12 and Z21 are computed
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Figure 1: Solutions for the different methods. The x-z-polarized wave to the
left and the y-polarized wave to the right.

with MLFMM, while Z22 is a sparse matrix with 5 entries on each row. Usu-
ally the number of unknowns in the PO region NPO À NMM the number of
unknowns in the MM region. The MM-part is preconditioned with SPAI [4].
The complexity of the method is C1K1NMM logNMM + C1K2NPO logNPO +
C2K3NPO, where K1 is the total number of iterations in ΓMM, K2 is the num-
ber of iterations in (5) and K3 is the total number of iterations in ΓPO. Usu-
ally K2 is smaller than K1 and K3. The first or second part will dominate
the total cost depending on the size of NMM. The cost should be compared to
C1KN logN , the cost of using MM on the entire surface. Since one can expect
that K1 < K2K the MM-PO hybrid is faster for cases when K2 is O (1).

4 Results

The method is verified by computing the monostatic Radar Cross Section
(RCS) from a cylinder mounted on a circular disc in the x-y-plane. At the
frequency 750 MHz the cylinder is 2λ high and the radius is 1λ. The radius
of the circular disc is 7.5λ. The discretization yielded about 37000 unknowns.
The monostatic RCS is computed with MM, PO and the MM-PO hybrid.
Since the object is open, EFIE is used in the MM-part. In the MM-PO hybrid
the cylinder and a circular disc with radius two wavelengths is discretized with
MM while the rest of the object is discretized with PO yieldingNMM ≈ NPO/6.
MRI is used in all cases to decrease the solution time. The plane wave impinges
in the x-z-plane. Both the x-z-polarized incident wave solution and the y-
polarized incident wave solution were computed. A total of 482 solutions were
computed. The iterations were stopped when ‖ri‖ ≤ 10−3 ‖bi‖.

The solutions obtained with the different methods are plotted in Figure 1.
To compare the accuracy of the different methods the difference between the
solution obtained with MM is compared to the other solutions in Figure 2.
Clearly the MM-PO hybrid solution is more accurate than the pure PO solu-
tion. The PO method was 26 times faster than the MM-PO hybrid and 262
times faster than the MM method. MRI reduced the solution time compared
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Figure 2: The difference between the MM solution and the other methods.
The x-z-polarized wave to the left and the y-polarized wave to the right.

to solving one right hand side at a time by a factor 1.8 in the PO case, 8.7 in the
MM-PO case and 6.8 in the MM case. After 119 right hand sides were solved
by MM the solutions to the remaining right hand sides were obtained by just
using MRI. Since both polarizations were solved we expected m ≈ κd ≈ 134
from theory. MRI only used 0.2 % of the total solution time. The MM-PO
hybrid needed 137 solutions and MRI used 2 % of the total time, while PO
needed 149 solutions and MRI used 61 % of the solution time. That more
solutions were needed in these cases is explained by the fact that we apply
shadowing, which makes the right hand side less smooth.

In conclusion MRI is applied to electromagnetic scattering. An example is
given where it is demonstrated that MRI reduces the solution time.
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