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We present elements and representative applications of the wavefront (WF) evolution method
in describing high-frequency (HF') electromagnetic scattering phenomena. In our approach the
WFs (constant phase surfaces) are implemented as well-defined meshed (triangulated) surfaces,
orthogonal to rays, the rays being associated with vertices of the mesh. We describe evolution of
rays by means of Geometrical Optics and the Uniform Geometrical Theory of Diffraction (UTD),
accounting for diffraction processes (the present implementation being limited to edge diffraction
on scatterers defined by facetized surfaces). In our implementation, in order to be able to compute
diffracted fields with higher accuracy, we use a suitably modified version of UTD, which ensures
that the field behavior near diffraction edges is reproduced in agreement with the exact solution
to the canonical problem.

The WF method has two advantageous features compared to more conventional ray-tracing
techniques:

(a) The number of rays is adjusted dynamically in order to maintain an approximately constant
resolution as the WF expands or shrinks, and

(b) the WF definition as a surface with connectivity properties enables us to achieve accurate
interpolation of fields associated with rays.

We describe in more detail two elements of the method:

(1) an algorithm for generating edge-diffracted WFs, and

(2) a procedure for evaluating currents induced on the scatterer surface by incident, reflected, and
diffracted WF's, which can be used in the context of integral equation based methods.

(1) In order to generate a diffracted WF, we first construct, by interpolation, rays emerging
from a WF and hitting (within the given tolerance) those edges of the (triangulated) scatterer
surface which may be considered a source of diffraction (i.e., edges whose adjacent faces are suffi-
ciently non-coplanar). Next, from the edge points hit by the interpolating rays, we launch sets of
diffracted rays (with the angular spacing appropriate for the required WF resolution). Finally, we
create ray-ray connectivity data to define the triangulated surface of the new diffracted WF.

(2) We parameterize the currents induced on the scatterer surface in terms of “large-support
basis functions” (LSBF's) defined on sets of triangles of the scatterer surface mesh of sizes dependent
on the scatterer geometry, but independent of the frequency, and, typically, large compared to
the wavelength. The LSBFs incorporate the notion that the asymptotic HF solution should be
representable as a sum of products of rapidly oscillating exponential factors (due to specific HF
scattering mechanisms), and smooth modulating functions.

We evaluate the surface currents by constructing intersections of “ray tubes” with the scatterer
surface, and interpolating the field associated with the rays. (Ray tubes are defined here as prisms
consisting of triplets of rays emerging from vertices of a triangle belonging to the WF mesh.)

The algorithm elements (1) and (2) allow us to obtain asymptotic solutions to HF scattering
problems at a cost independent of the frequency, and dependent only on the complexity of the
scatterer geometry.
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