
�������������	
��	���
�����������������
��
�������
��	��������
���������	
��

�
�

����������		�
���

���
����������	���
������������	����������������������
���������	�
�����

�����������
���� !"#��$%"&'���
��(��)�*��	��
��		�
�+��������������

��������� 	�,�����	���������
�-
����
� ����
����� ����������� ����		�.���
����
������
������������
���	��	���
���-������	���
���
������/��,0*��
��������/��
�
�-
����
� .��/� �� ��		�� ���������� -
��/���	� ���
� ����
������ �
����-� /���
�
����/���������-����1�����
�-
�����-������
���	���/
��-/�2��	�����3�������
�
�������
�	���� Engineering education in general, and The Electromagnetic
Engineer education in particular requires the assimilation of large amount of
math by the students. This assimilation is well known to be largely
enhanced by appropriate, interactive, computer examples showing numbers
and graphics relevant to the math under study.

Many packages exist which prove to be extremely powerful and useful in
this approach, among these [1-3], but they are so powerful and general that
they often need an University course by themselves to be mastered, and
even their basic utilization can be too long to learn within a standard course
devoted to Electromagnetics.

A solution can be custom made specific programs, with a simplified -
possibly graphic - interface, which can be learned very quickly leaving the
greatest possible time to learn Electromagnetism. The drawback of this is
that building a custom program is a long and demanding task, especially if a
good graphical user interface (GUI) is desired, even in the very high level
programming languages provided by aforementioned packages ([1-3]).

The purpose of this work is to present a Matlab [2] suite of scripts providing
an application programmer interface (API) for a virtual laboratory, defining
an experiment framework (EF) able to host different kind of virtual
experiments, or experiment applets (EA), allowing the educator to write just
the minimum required of code, leaving all GUI and user interaction to the
framework itself, yet presenting the user with a nice, easy to use, interface.
�
�����	����� ���������� �
�� � The EF is a suite of Matlab scripts
providing the basic functionality for the virtual laboratory. It opens a main
window and populates the “Labs” (Fig. 1) menu by automatically browsing
the directory tree where it resides, seeking for EA definitions. All other
menus are defined within an appropriate, external, text file so that
localization to languages different than English is immediate.

The directory tree containing the EA is organized into two levels below the
root directory. Each directory of the first level defines a class of

Teh-Hong Lee
0-7803-7846-6/03/$17.00 ©2003 IEEE

experiments. In each of these directories there is a text file, defining “Labs”
menu and submenu entries, and as many subdirectories as there are
experiments. EA definition and code is stored within the pertinent
subdirectory. Since the EF API allows for an upward search in the directory
tree for subroutines, code common to more than a single experiment need
not to be duplicated but can be stored in the first level directory.

��
�����)�����
���.�
1��4���	���

�����	����������� – When an experiment is ran the EF reads and run the
relevant EA. An EA is an object defined by a text file stating the parameters
of the experiment and the name of the various Matlab user defined functions
needed to perform the operations.

When an EA is invoked EF reads this definition file and creates a Matlab
data structure whose entries are the experiment parameters defined in the
text itself. It then creates two windows, one containing a toolbar, with one
button for each possible operation defined in the experiment (Fig. 2, left)
and one for the experiment outputs (Fig. 2, right). Besides these user defined
operation buttons some standard actions – Save data, Load data from disk,
help, exit – are also provided in the toolbar.

��
�����)�,���
�����-�����,������
��-�
�	�/5�/����/����

�������-���

As an example of the simplicity of an EA the design of an Array with given
Side Lobe Level (SLL) with the Dolph-Chebyshev technique [4] is here
analyzed.

The Listing in Fig. 3 shows the EA definition file for the experiment at
hand. The first block ���������� defines the parameters of the EA. Each
parameter can be a scalar value, an array or a matrix, of Integer, real or
complex type, with a given range of variation. This description allows the
EF to automatically validate each users input. The syntax is

����	
�
���	
��

��������
����
������
��

In the present case an integer number, indicating the number of elements in
the array. A real number, indicating the Side Lobe Level (SLL) in dB and an
array of amplitudes is necessary. The amplitudes need not to be complex,
strictly speaking, but this allow for more freedom in experimenting with
phased arrays.

After the data structure there can be as many blocks ��������� and
��
� ���!� as desired. The order in which they are given states the order
of the buttons in the toolbar. The ��������� blocks define the parameters
to be presented to the user for input. The Input window is built
automatically by the API, and a check on the values provided against type
and range is automatically performed (Fig. 4, left). In case that some
operations need to be made on the newly entered values before any other is
performed it is possible to define a Matlab function to be executed after the
input is successfully completed via a "�
�#���$��� definition. The
��
� ���!�� $�!��, on the other hand, just defines a user defined
Matlab function to be executed.

% Dolph-Chebyshev Design
%%%%%%%%%%%%%%%%%%%%%%%%%%%
Begin DataStruct
% Number of Elements
N=2;Int;[2,20]
% Side Lobe level [dB]
SLL=-20;Real;[-100,0]
% Element Amplitudes
A=[1.,1.];Cplx;[0,Inf,0,6.2832,0]
End DataStruct
%%%%%%%%%%%%%%%%%%%%%%%%%%%
Begin InputMask
% Mask for User input
Mask=Design Data
Title=Mumber of Elements
Variable=N;N
Variable=SLL;SLL
UserCallBack=ResizeA
End InputMask

%%%%%%%%%%%%%%%%%%%%%%%%%%%
Begin ExecButton
% Button for Executing the Design
Label=Design
Command=Design
End ExecButton
%%%%%%%%%%%%%%%%%%%%%%%%%%%
Begin ExecButton
% Button to show the Amplitudes
synthesized
Label=Amplitudes
Command=ShowA
End ExecButton
%%%%%%%%%%%%%%%%%%%%%%%%%%%
Begin HelpMask
Title=Array di Dolph-Chebyshev
Line= Some theory here…
End HelpMask

��
�����)��4���	������,�����
���������	���

The user defined Matlab functions have access to the parameters of the EA
via a global Matlab Structure named %���
�����, which holds all the
data defined in the EA ���������� block. In the present case the
%���
�����&� and� %���
�����&�''� scalar values and the�

%���
�����&% array. Functions called by an ExecBlock defined button
are also passed, as a parameter, a Window Handler relative to the output
window (Fig.2, right) where graphs can be drawn. The Output window
automatically presents an area for graphs and four sliders to allow the user
to interactively adjust axes limits as well as buttons to hide/show grid lines.
There are also API functions to show windows containing numerical results
with just one command these windows are automatically built and their
appearance can be seen in the example presented in Fig. 4 on the right.

For the given example the functions needed are indeed three: �
�()
%
which is a 5-line function resizing array %���
�����&% accordingly to
the current number of elements %���
�����&�; this is needed to prevent
undesired results in having the Design function operating over an array of
dimension different than 6. �*!+% is a two line function calling the
appropriate API function to show the amplitudes (Fig.4 right) of the
synthesized array. The most complex function is �
�(��, which actually
implements the Dolph Chebyshev design process [4]. As stressed in the
introduction the preparation of the experiment, from the educator point of
view, requires basically to write down this subroutine.

��
�����)��4���	���������������		��-���
�����������

7
�-/�8������������7	���8����1���

���
���	������an experiment framework API has been devised and created
in Matlab, allowing the simple creation of classes of experiment. By
resorting to the presented API the educator is able to prepare its own
experiments with little or no concern on the user interaction, but only
focusing on the math and physics, hence saving much time.

The API source code is freely available, together with its full
documentation, under the terms of the GNU General Public License [5] on
the authors site http://www.selleri.org/ or by e-mail request.

�������
���
[1] Waterloo Maple - http://www.maplesoft.com.
[2] Mathematica – Wolfram Research – http://www.wolfram.com
[3] Matlab - The MathWorks Inc. – http://www.mathworks.com
[4] C.A. Balanis, ,������� �/��
��� ���	����� ���� ����-�� John Wiley & Sons,

New York (NY) 1982, pp.247-254.
[5] http://www.gnu.org/licenses/gpl.html

