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I. Introduction 
 

A simple method is presented which details the process by which unit vectors in a source 
region are represented in terms of unit vectors of a field point. Since everything is done from the 
standpoint of the source unit vectors, this procedure differs slightly from equivalent treatments 
that transform distributions of source currents [1 – 3]. The objective of this paper is to present this 
method in a systematic fashion which easily translates to a number of coordinate systems. Using 
the method of the gradient and a high-level language such as Mathematica, these conversions can 
be done with great ease. This approach finds its greatest value when considering coordinate 
systems that are not used widely used. 
 
II. Background  
 

The evaluation of an integral containing a Green’s function and current distribution is 
fundamental step when determining the radiation patterns for many types of antennas. For 
example, the integral for the vector potential A  (free space), where the integrand contains the 
free-space Green’s Function and a distribution of current, requires integration over a source 
region. Setting up the integrand is straightforward when the distributions are expressed in 
Cartesian coordinates. However, care must be taken if the integration is to employ other 
coordinate systems. A good example of the complexities that arise is seen when evaluating A  for 
a loop of current [1]. This paper demonstrates that the integrals can be properly formulated 
through a transformation of the source unit vectors. 
 
 A specific integral of interest (for the vector potential A ) is evaluated in the far field 
using the following form [1]: 
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The evaluation of A  is done over a coordinate system suitable for the distribution of 

source current (electric or magnetic). The vector r ′  (defined as a vector from the origin of the 
coordinate system to the source) is frequently expressed in Cartesian, Cylindrical, or Spherical 
coordinates; although, other coordinate systems may also be employed depending on the nature of 
the current distribution. In these three coordinate systems, r ′  is expressed as: 
 
 zzyyxxr ′′+′′+′′=′ ˆˆˆ  (2) 
 
 zzr ′′+′′=′ ˆˆ ρρ  (3) 
 

 rrr ′′=′ ˆ  (4) 
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where the unit vectors (e.g., )ˆ,ˆ,ˆ( zyx ′′′ ) have been annotated with prime notation emphasizing 
they are describing the source region. The vector denoting the field position is denoted 
as: rrr ˆ= and rr = . Proper transformations remove the prime notation from the unit 
vectors. 
 
III. Transformation of the Unit Vectors 
 
 The underlying problem is to represent the prime unit vectors (describing the source 
region) in terms of the unprimed unit vectors (representing the field point). The fact that these unit 
vectors in Cartesian coordinates translate directly from primed to unprimed notation can then be 
exploited, that is: 
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Note that this paper will impose the restriction that the source (antenna) and field coordinate 
systems are located at the same point. 
 
While there is a direct projection of unit vectors in prime and unprimed notation for Cartesian 
coordinates (i.e., 1ˆˆ =⋅′ xx ), unit vectors in other coordinate systems (or in two different coordinate 
systems) do not project directly on each other. For example, when using spherical coordinates for 
both the source and field 1ˆˆ ≠⋅′ rr  (except for the special case when φφ ′=  and  θθ ′=  ), that is: 
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Equation 5 can be used to determine the relationship between two different coordinate 

systems. For example, unit vectors in spherical coordinates can be decomposed into equivalent 
Cartesian coordinate unit vectors by: 
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The source (primed) unit vectors in Cartesian coordinates are easily obtained substituting 

Equation 5 into 7. 
 
The problem of representing the primed cylindrical coordinate unit vectors in terms of 

spherical coordinate unit vectors is now addressed. The primed unit vector representation is given 
by: 
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By Equation 5, it follows that Equations 7 and 8 may be equated, that is: 
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Solving for the primed unit vectors gives: 
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One can follow this same procedure for a source expressible in primed spherical 

coordinate unit vectors, the transformation to unprimed spherical coordinate unit vectors is: 
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Equations 10 and 11 contain terms that enter into the integration process. 
 
III. Other Coordinate Systems 
 

The method of solution used in this paper can be extended to any coordinate system of 
interest and is briefly outlined. The “method of the gradient” [4] facilitated the work and was 
employed extensively. For example, Paraboloidal coordinates (unit vectors of )ˆ,ˆ,ˆ( φ′′′ vu ) have 
scalar lengths ),,( zyx ′′′  given by [5, pp. 34]: 
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Taking the gradient (Cartesian) of the left and the gradient of the right (Paraboloidal) of 

Equation 12 gives: 
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As done previously, the right-hand sides of Equations 7 and 13 are equated and solved for 

the primed unit vectors. 
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The method is readily used for the coordinate systems discussed in [5] such as Elliptic-cylinder, 
Prolate-spheroidal, Oblate-spheroidal, etc. 

 
IV. Conclusion 

 
While equivalent methodologies are well known and have been employed over the years 

to evaluate problems such as the loop of current, it is believed that the approach outlined here 
streamlines the formulation of the integrand and made the analysis of such problems more 
systematic. Since the integrals for A  (and F ) have been treated extensively in the Cartesian, 
Cylindrical, and Spherical coordinate systems, the approach advocated here merely outlines an 
alternate way to devise the integrals. The primary advantage of this method is its systematic 
process of unit vector transformation, which was extendable to any desired coordinate system. 
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