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Abstract

This paper is devoted to electromagnetic scattering from an N multilayered circular
cylinder. We consider waveguides in the z direction, that is we look for the solution of
Maxwell equations along the z direction. We assume a dielectric core and derive a mode
matching approach for solving the problem. A numerical result is presented that illustrates
the algorithm .

Introduction

In this paper we discuss some analytical and computational results for the electromagnetic
scattering problem from N layered scatterer. This problem is of significant importance in
many areas of in microwave and optical applications (see [1] and the references therein).
The scatterer is assumed to be a nested body consisting of a finite number of homogeneous
layers (annular regions) with a dielectric core. We consider waveguides in the z direction,
that is we look for the solution of Maxwell equations along the z direction. This problem
is also called the two-and-one-half dimensional problem. An important amount of work
was reported for the TM and TE case (see [2]) whereas much less is shown for the more
complicated hybrid case where both Debye potentials Ez and Hz are needed to construct
solutions in cylindrical waveguides. Here we try and remedy this gap by deriving and solving
linear algebraic equations similar to the TE and TM case discussed in [2].

1 Statement of the problem

We are looking for the solution (E,H) of Maxwell system of equations

∇×E = −iωµH,

∇×H = iωεE,

such that
F(x, y, z, t) = F(x, y)eiωt−iβz,

where β 6= 0 is the wave number along the guide direction and F stands for E and H. The
latter notation is assumed throughout this paper.
If we write each vector and each operator in the above equations as the sum of a transverse

part, designated by the subscript T , and a longitudinal component, we obtain the modified
Maxwell system of equations which can be solved to obtain:

ET = α (∇TEz − η~e3 ×∇THz) and HT = α (∇THz + η̃~e3 ×∇TEz) . (1.1)
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where α = − ıβ
κ2 , η =

ωµ
β
, and κ2 = ω2εµ− β2, η̃ = ωε

β
, and

∇2
TFz + κ2Fz = 0. (1.2)

So, the problem of solving the Maxwell system of equations in the waveguide structure
reduces to solving (1.2) and obtain (Ez, Hz), then recover HT and ET from (1.1).
We deduce, from (1.1) that

Eφ = α

(

1

ρ
∂φEz + η∂ρHz

)

, and Hφ = α

(

1

ρ
∂φHz − η̃∂ρEz

)

. (1.3)

Using separation of variables it is known that the solution of the Helmholtz equation my
be obtained. In particular we have

[Ez, Hz](ρ, φ) =
∞
∑

n=−∞

(

H(1)
n (κρ)Bn + Jn(κρ)An

)

einφ−iβz,

where Jn is the Bessel function and H
(1)
n is the Hankel function of first kind. The coefficients

An = [an, ãn]
t and Bn = [bn, b̃n]

t are to be found using boundary conditions. Here the
superscript t stands for transpose.
Using (1.3) we have

[Eφ,Hφ]
t(ρ, φ) =

∞
∑

n=−∞

[Q1,n(κ, ρ)An +Q2,n(κ, ρ)Bn] e
inφ−iβz, (1.4)

where

Q1,n(κ, ρ) = α

[

in
ρ
Jn(κρ) ηκJ ′

n(κρ)

−η̃κJ ′
n(κρ)

in
ρ
Jn(κρ)

]

and Q2,n(κ, ρ) =

[

in
ρ
H

(1)
n (κρ) ηκH

(1)′

n (κρ)

−η̃κH
(1)′

n
in
ρ
H

(1)
n (κρ)

]

.

Now, Let Dl, l = 0, 1, · · ·N − 1 be N circular cylinders such that Dl−1 ⊂ Dl, l =
1, 2, · · · , N − 1. Let Γl be the boundaries of Dl−1, l = 1, · · · ,M . Now let Ω1 = D0, Ωl =
Dl\Dl−1, l = 1, · · · , N − 1, and ΩM = R2\DM−1. We assume that ΩM is simply connected.
Each of the regions Ωl is a dielectric material of complex permittivity and permeability εl and
µl (l = 0, · · · ,M), respectively and let the field F in Ωl be denoted by Fl := FT,l + ~e3Fz,l.
The geometry is assumed to be illuminated by an incident field which is a plane wave
F i
z = eiκr·d−iβz with direction d = (cosφ0, sinφ0), and r = x~e1 + y~e2 + z~e3. From the
analysis above we see that solving the Maxwell equation in the multilayered scatterer using
a waveguide structure yields to solving the Helmholtz equation in each domain Ωl for Fz,
that is,

(∇2 + κ2
l )Fz,l = 0 in Ωl, l = 0, · · · , N,

The other components FT,l are found using (1.1). In ΩM we have a sum of the incident
field and a scattered field, that is Fz,N = F s

z + F i
z . The scattered field F

s
z should satisfy the

Sommerfeld radiation condition.
The above problem should be solved subject to boundary conditions on the interfaces.

For Electromagnetic materials, this requires the continuity of the tangential components of
the electromagnetic fields across the interfaces.



2 Boundary conditions and solution of the problem

Let rl+1 and Ol+1 be the radii and the origins of the cylinders , l = 0, 1, 2, · · · , N − 1; then
we have the following expansions: For the outermost region we have,

[Ez, Hz]
t(ρM , φM ) =

∞
∑

n=−∞

(

H(1)
n (κMρM )B

M
n + Jn(κMρM )p

)

ein(φM −φ0)−iβz

and for other regions we have

[Ez, Hz]
t(ρ1, φ1) =

∞
∑

n=−∞

(

H(1)
n (κlρ1)B

l
n + Jn(κlρ1)A

l
n

)

einφ1−iβz, l = 0, 1, 2, · · ·N − 1,

where B0
n = 0

To enforce the boundary conditions we need that the fields expressed in terms of X1O1Y1

be translated to XlOlYl coordinates, for l = 2, 3, · · · ,M − 1 . The addition formula yields

[Ez, Hz]
tUl(ρl, φl) =

∞
∑

n=−∞

∞
∑

q=−∞

jq−n(κldl1)
[

H(1)
q (κlρl)B

l
n + jq(κlρl)A

l
n

]

eiqφl−i(q−n)φl1
−iβz,

where dl1 is the distance between O1 and Ol and φl1 is the angle between O1Ol and the x
axis.
Now the boundary conditions require that (Ez, Hz) and (Eφ,Hφ) be continuous on the

interfaces. This means that [Ez,l−1, Hz,l−1]
t = [Ez,l, Hz,l]

t and [Eφ,l−1,Hφ,l−1]
t = [Eφ,l,Hφ,l]

t

for l = 1, 2, · · ·N. From (1.4) and the above expansions we can use the boundary conditions
to derive an infinite system of linear equations. The sums have to be truncated, at some
number, N0, to obtain a finite system in the unknowns Al

n and Bl
n. This system is solved

via a conjugate gradient approach.
We validated our numerical results by computing the fields on the boundaries, thus

verifying the boundary conditions. We show here the case for the outermost boundary. In
the figures below we compute the fields for three cylinders for different values of µ and ε. In
figure 1 we plot |Ez,3|+ |Hz,3| in solid line and |Ez,4|+ |Hz,4| against the incident angle φ0 on
the outermost boundary. Clearly they are identical and thus verify the boundary condition.
We also plot in Figure 2 the difference of the two electromagnetic fields against φ0 and β. It
vanishes as expected.

Figure 1: |Ez,3| + |Hz,3| in solid line and |Ez,4| + |Hz,4| against the incident angle φ0 on the

outermost boundary of 3 layered cylinder.
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Figure 2: the difference of the two electromagnetic fields against φ0 and β.
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