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1. Introduction 
Because of mulitpath or smart jamming, the desied signal of an adaptive array will be 

correlated or coherent (when 1=ρ ) with interferers. Spatial smoothing is a simple and 

effective technique for solving this problem[1][2][3] and has been widely used for 
estimation of Direction of Arrival (DOA) and Digital Beamforming(DBF). However, the 
array aperture is reduced because subarray has to be used. Consequently, the resolution of 
array is reduced. If we want to maintain large aperture subarray, the number of subarrays 
is decreased and the effect of decorrelation is degraded which deteriorate the array 
performance. This paper focuses on the DBF application. An adaptive spatial smoothing 
method is proposed. Compared with the traditional uniform spatial smoothing method, 
the advantages of this method are: (1) When the incident angles between interferers and 
desired signal are small, the array gain is improved. (2) When large subarry aperture is 
required, the adaptive spatial smoothing method can provide better array gain. 

2. Spatial Smoothing Method 
We consider a uniform linear array with N  elements. The dimension of subarray is 

M . Thus we can obtain 1+−= MNL  subarrays. The distance between adjacent 

elements is 2
λ ,where λ  is the wavelength of desired narrow-band signal. Assume D  

narrow-band incident planewave signals including one desired signal and 1−D  
interferers. One or more interferers are correlated with the desired signal. The frequency 

domain snapshot model is used, )()()( ωωω WVFX += , where )(ωF  is a 1×D  

random vector with zero mean value, which is defined as 

)](,),(),([)( 11 ωωωω IIsF D
T

−= � . )(ωW is additive white noise with power σ ω
2 . 

V is the manifold matrix of array which is represented as 

[ ])()()( 21 ϕϕϕ DNNN vvvV ����= ,Where ],,,,1[)( )1(2 eeev Njjj T
N

ϕϕϕϕ −= � and 

Diii �,2,1)sin( == θπϕ , where θ 1  is the incident direction of the desired signal and  
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Dii ,,2, �=θ  are the incident directions of interferers. The covariance matrix of 

snapshots is IVSVS H
fx σ ω

2+= , where S f  is the covariance matrix of )(ωF . 

We choose an M-dimension subarray and define [ ])()()( 21 ϕϕϕ DMMMM vvvV ����=  

and ][ 21 eeediagD Djjj ϕϕϕ ����= .The covariance matrix of the ith subarray can be 

written as IVDSDVS H
M
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f
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M σ ω

2)1()1()( )( += −− . The traditional forward smoothing 

method uniformly weights all subarrays. That is �=
=
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expressed as  
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We can observe that the effect of spatial smoothing is equivalent to construct an 

M-element array and the covariance matrix of )(ωF  is changed from S f  to S FSf , . 

The (i,j)th element of S FSf ,  can be expressed as �=
=

∆−
L

i

ijij
fFSf e

L
jiSjiS

1

)1(
,

1
),(),( ϕ . 

Therefore � the effect of spatial smoothing is equivalent to multiply a factor 

�=
=

∆−
L

i

ijij
ij e

L
g

1

)1(1 ϕ  with the original (i,j)th off-diagonal element of S f  while 

preserving all original diagonal elements.  

3. Adaptive spatial smoothing 

Assume that the direction of the desired signal satisfies 01 =ϕ . We observe that 

ϕ∆ j1 and ϕ∆ 1j  are ϕ− j and ϕ j
� Dj ,,2 �=  actually. If we find an L-dimension 

adaptive weight vector whose correspondent beam pattern has notches at ϕ− j  and ϕ j , 

Dj ,,2 �= , and use this adaptive weight to perform adaptive weighting smoothing, then 

the correlation of signals can be greatly reduced and the performance of array can be 

improved when ϕ∆ j1  is small. Furthermore, (1) Because the beam pattern of 

L-dimension linear array is symmetrical about 01 =ϕ , we use real weight vector and 

constraint the sum of all elements to be 1. (2) Because here the L-dimension linear array 

must restrain two times the original number of interferers, we must ensure 12 −> DL . 
The steps of adaptive spatial smoothing method are : 
Step 1:  We choose the dimension of subarray as L  and 1+−= LNM  subarrays 
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are obtained. Then we use traditional uniform spatial smoothing method (or Chebychev 
weighting method) to get an LL ×  autocorrelation matrix RL . We take the real part of 

RL  as  

])))((Im())([Im(])))((Re())([Re()Re(' ωωωω XXEXXERR L
H

LL
H

LLL −==

For convenience, we consider the situation of one desired signal and one correlated 

interferer and assume that ][]])()([
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 , where 

g ij  denotes the multiplication factor introduced in the smoothing process. Therefore, 

R L
'  is an autocorrelation matrix of 4 signals and the manifold matrix is 

[ ])()()()( 2211 ϕϕϕϕ −−= vvvvV LLLLL ��� . The result can be extended to the situation 

of more interferers. We can obtain the adaptive weight vector using MPDR algorithm 

IRI
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=  , where ]1,,1,1[ �
T

LI = , 1×L . W L  is a real vector.  Due to the 

effect of spatial smoothing , the beam pattern correspondent to W L  has low values at 

ϕ− j  and ϕ j
� Dj ,,2 �= . 

Step 2: We perform adaptive spatial smoothing on L M-dimension subarrays with 

W L , where �=�=
=

∆−

=

∆−
L
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Step 3: Based on step 2, we use MPDR algorithm again and obtain an M-dimension 

subarray weight vector,  
ISI

IS
W

MFS
H
M

MFS
M
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= ,   where ]1,,1,1[ �
T

MI = , 1×M . 

4. Simulation results 
We consider a standard 16-element linear array. The dimension of subarray is ranged 

from 9 to 13. The direction of the desired signal is 01 =θ . There is one interferer whose 
direction )sin( 2θ=u  is uniformly distributed between [0.2,1]. The correlation 

coefficient of the desired signal and interferer is real and uniformly distributed in [0,1]. 
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Additive white noise is assumed. 20=SNR  (dB) and 20=INR (dB). The snapshot 
number of the simulation is 1000.  

In Figure 1, we demonstrated the statistical results of array gain for different 
interferer incident angles. We observe that when the incident angle of interferers is small, 
adaptive spatial smoothing method is the best one. 
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Figure 1  Performance versus incident 
 angles 
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Figure 2    Performance versus subarray  
apertures

In Figure 2, we show the performance for different subarray dimensions M=9~13. 
The statistical results of array gain are demostrated. We can observe that when the 
dimension of subarray M is large, the adaptive spatial smoothing method performs better 
than other two methods. 

5. Conclusion 
Compared with the traditional spatial smoothing method and the weighted spatial 

smoothing method, the new method has following advantages: (1) When the incident 
angles between interferers and the desired signal are small, the array gain is improved.(2) 
When a large subarry aperture is required, better array gain can be obtained. In the step 1 
of adaptive spatial smoothing , we need to compute an L

�
1 adaptive weight, which 

brings additional computational load. But because large M will lead to small L and the 
computation is based on real number, the computational cost is acceptable.  
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