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Introduction 
 

The propagator is a mathematical expression which, when convolved with any 

given present time field, evolves that field through a predetermined time increment [1-4]. 

When the field is entirely causal, the free space propagator and free space Green’s 

function have a simple mathematical relationship. In this paper a method for finding the 

full wave time domain propagator for the electromagnetic field is presented. Starting with 

Maxwell’s differential equations in tensor form, a state variable approach is used to 

derive expressions for the propagator in three dimensions. It is shown that the properties 

of the propagator, which satisfies a homogeneous hyperbolic matrix equation, and the 

Green’s function, which satisfies an inhomogeneous equation with the same operator, can 

be used to determine their mathematical relationship.  

 
Formulation 
 

In a source free homogeneous region the time domain Maxwell curl equations in 

terms of the electric and magnetic field intensities,  and , are E H
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where the permeability and permittivity are respectively µ  and . Eqns. (1) and (2) can 

be cast in the general matrix form 
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0  is a 3×3 null matrix and R  is the operator matrix 
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Referring to (3) the propagator K  is found by solving 
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Eqn. (6) can be solved to find the components of the propagator matrix 
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Standard Fourier transform techniques yield a solution to (6) in the form 

( )
( )

3
1

2
je e dτ

π

∞
′−

−∞

= ∫ S k r rK ki   (9) 

After tedious mathematical effort, (9) yields the elements of (8). As an example of the 

general form of these elements, 
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homogeneous medium,  are the Dirichlet delta function and its derivative and the 

unit step is defined by 
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Once K  is known, the field everywhere at a time t can be found from the previous time 

(t0) field by performing the convolution operation: 
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 It is interesting that the elements of the propagator matrix K , all of which are 

similar to , are composed of simple analytical expressions. According to Eqn. (11), 

the various propagator terms form the final field by the accumulated effect of the initial 

field and its derivative on the spherical causal boundary, due to the

11K
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( )R vδ′ −
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 terms, the initial field and its derivative at the center of the causal sphere, due 

to the Rδ and ( )Rδ′  terms, and the initial field everywhere between the center and 

boundary of the causal sphere, due to the ( Rτ − )U v  terms. This is somewhat puzzling in 

that one would expect that only the initial field on the spherical causal boundary and 

traveling toward the center should have an effect on the field at the center of the causal 

sphere at the end of the causal time increment.  

 Although Eqn. (11) appears to be the tensor form of Huygens principle in the time 

domain, the propagator K  satisfies the homogeneous equation 
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whereas the Green’s function, which is the kernel generally associated with Huygens 

principle, satisfies 
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However, it can be shown that there is a simple relationship between the propagator and 

Green’s function. First observe that  
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It is therefore postulated that the relationship between the time domain propagator and 

Green’s functions for Maxwell’s equations is 

 ( , | , ) ( ) ( , | , )t t U t t t t′ ′ ′ ′ ′= −G r r K r r   (16) 

That this is indeed the case can easily be shown by substituting (16) into (13) and 

appealing to (12), (14) and (15). 

Conclusions 

 The free space time domain propagator for Maxwell’s equations has been found 

and from this the time domain Green’s function has been derived. It is shown that the two 

are the same function after the initial time t . It is also shown that the 

propagator/Green’s function matrix has terms that are surprisingly simple. Possible 

applications of this result are as an alternative scattering formulation to time domain 

integral equations, which typically are based on potential functions [5]. Also, the 

generality of this analytical result suggests that one might be able to use the propagator 

expressions to accurately determine the error incurred in a variety of time domain 

numerical methods. 
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