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1.  Introduction

Procedures for determining the currents and input impedance of a linear dipole
antenna are generally based on studies of the electric-field integral equation
(EFIE), specifically the Pocklington or Hallén equations.  Approaches based on
the magnetic field integral equation (MFIE) have received little attention other
than the work of Zhang and his colleagues in the 1980s [1-3].  Zhang’s MFIE
implementation employed a series feed and used a low-order method of moments
discretization.  In the following, the MFIE with a frill feed model is considered.
Three discretization procedures, the method of moments (MoM), the boundary
residual method (BRM) [4-5], and the locally-corrected Nyström (LCN) method
[6-7], are investigated.  Since the MFIE is only rigorously applicable to closed
conducting bodies, currents on flat end caps are included in the model.

2.  Formulation

Consider a linear dipole, of radius a, aligned with the z-axis in a cylindrical
coordinate system.  By assumption, the fields and current density are f-
symmetric.  The MFIE for the linear dipole is based on the general relation

H H Hinc tot s
f f f= - (1)

which will be enforced in the limit as the observer approaches the surface of the
cylindrical dipole from the exterior.  The primary unknown on the cylindrical part
of the dipole can be expressed in terms of the total current I(z) through the
equation

I(z) = 2pa Jz(a, f, z) (2)

The scattered field due to currents on the barrel can be expressed as
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where

R a a z z= - ¢ + + - ¢r r f2 2 22 cos ( ) (4)
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The scattered H-field due to a r-directed current density on an end cap of the
dipole, expressed as I(r) = 2p r  Jr( r , f, z¢), can be written as
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where the end cap is located at z¢ and where

R z z= - ¢ ¢ + ¢ + - ¢r rr f r2 2 22 cos ( ) ( ) (6)

The incident field is that produced by a magnetic frill of outer radius b located at
the center of the dipole, and can be expressed as

H z
j

b a

e

R
d dinc

a

b jkR

f
r f

p

r we f
p

f r( , , )
ln( / )

cos( )0
4

0

2

= ¢ ¢ ¢
¢ =

-

¢ =
Ú Ú (7)

where R is defined in Equation 6.  These integrals can be computed by quadrature
with appropriate treatment of the singularities at R = 0.

3.  Discretization Methods

The MoM procedure is well-known to the EM community and needs no
elaboration.  A discretization of the MFIE incorporating piecewise-linear basis
functions was implemented, with the equation enforced at discrete points at cell
junctions to produce a square system of equations.

The BRM, as described in [4-5], was also applied to the MFIE with piecewise-
linear basis functions.  In this BRM implementation, the equation is enforced at
twice the number of boundary points as there are cells in the model, to yield an
overdetermined system of equations.  In an attempt to better model the current
and charge density at the corners where the barrel of the dipole meets the endcaps,
the basis functions adjacent to the function at the corner were modified to
incorporate a functional dependence

B(u) = u2/3 (8)

in the cells abutting a corner, where u is a parametric variable along either z or r
with an origin at the corner.  Equation (8) is used instead of the linear function in
order to provide the appropriate charge singularity.  These functions are
superimposed with the regular linear basis functions centered at the corners, so
the current at the corner is nonzero.

The LCN procedure [6-7] was implemented with Gauss-Legendre rules of order p
up to 10.  Order p=2 is expected to provide a representation similar to that of the
linear basis functions used with the MoM and BRM [7].  Local corrections were
performed in the source cell and the adjacent cells.  No attempt was made to
incorporate the edge condition as in Equation (8).  The LCN procedure does not
impose cell-cell continuity and thus uses more unknowns for a given number of
cells than the MoM or BRM approaches.



4.  Results

For illustration, input impedance results are shown in Tables 1-5 for a dipole of
length 0.48l and radius a=0.0391l, for a frill feed corresponding to a coaxial ratio
b/a=1.187.  For this dipole, Holly measured an equivalent impedance of Zin = 102
– j 16 W [8].  Numerical results for impedance from the three methods exhibit
little variation with changes in the number of cells in the model and agree to
within about 1 W with each other.  The low-order LCN method (p=2) provides a
representation comparable to the linear basis functions used with the MoM and
BRM methods.  Higher-order LCN results are shown in Tables 4 and 5, and show
only a slight variation from the p=2 results.  The total number of equations and
unknowns are also shown for each approach.
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TABLE 1.  MoM results for Zin of a dipole with L = 0.48l, a = 0.0391l, b/a = 1.187

cells on
barrel

cells on each
end unknowns equations Rin Xin

26 1 27 27 83.32 –11.63
50 2 53 53 92.00 –13.59
74 3 79 79 94.29 –14.11
98 4 105 105 95.23 –14.31
124 5 133 133 95.73 –14.41
148 6 159 159 96.00 –14.47
172 7 185 185 96.18 –14.50
196 8 211 211 96.30 –14.52
222 9 239 239 96.39 –14.54
246 10 265 265 96.45 –14.55



TABLE 2.  BRM results for a dipole with L = 0.48l, a = 0.0391l, b/a = 1.187

cells on
barrel

cells on each
end unknowns equations Rin Xin

26 1 27 56 104.52 –11.85
50 2 53 108 98.24 –13.87
74 3 79 160 95.97 –13.79
98 4 105 212 95.90 –14.34
124 5 133 268 95.82 –14.57
148 6 159 320 95.76 –14.65
172 7 185 372 95.82 –14.74
196 8 211 424 95.84 –14.77
222 9 239 480 95.87 –14.81
246 10 265 532 95.89 –14.83

TABLE 3.  LCN results for p=2; dipole with L = 0.48l, a = 0.0391l, b/a = 1.187

cells on
barrel

cells on each
end unknowns equations Rin Xin

26 1 56 56 99.74 –4.90
50 2 108 108 98.45 –9.25
74 3 160 160 97.96 –10.92
98 4 212 212 97.71 –11.79
124 5 268 268 97.57 –12.35
148 6 320 320 97.49 –12.69
172 7 372 372 97.41 –12.95
196 8 424 424 97.34 –13.15
222 9 480 480 97.26 –13.33
246 10 532 532 97.18 –13.47

TABLE 4.  LCN results for p=6; dipole with L = 0.48l, a = 0.0391l, b/a = 1.187

cells on
barrel

cells on each
end unknowns equations Rin Xin

12 1 84 84 97.88 –10.96
24 2 168 168 97.40 –12.74
36 3 252 252 97.22 –13.35
48 4 336 336 97.12 –13.67
60 5 420 420 97.06 –13.87
72 6 504 504 97.02 –14.00

TABLE 5.  LCN results for p=9; dipole with L = 0.48l, a = 0.0391l, b/a = 1.187

cells on
barrel

cells on each
end unknowns equations Rin Xin

12 1 126 126 97.37 –12.84
24 2 252 252 97.11 –13.72
36 3 378 378 97.02 –14.02
50 4 522 522 96.98 –14.19




