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1.  Introduction 

Photonic band-gap (PBG) materials [1] have recently attracted significant interest 
in the microwave region to suppress the surface wave and to improve components 
performances [2]. The dispersion characteristics of PBG structure have been analyzed 
by various computational methods, among them, the finite difference time-domain 
(FDTD) becomes quite popular. The authors had derived the FDTD formulation for the 
homogeneous complex (bi-anisotropic) medium with various degenerated cases [3], 
however they are complicated and difficult to deal in programming and calculation. 

A Non-Yee grid higher order FDTD (NY-FDTD) method was introduced by Liu [4]. 
In contrast to the FDTD with standard Yee’s algorithm, the NY-FDTD method 
formulated electric- and magnetic- fields at the same central point of each grid, rather 
than from the staggered grids. This scheme presents an important advantage over the 
Yee’s algorithm that can easily formulate the EM fields in arbitrary complex medium. 

  In this article, the NY-FDTD formulation of PBG structure in anisotropic medium are 
derived, and then applied to compute the dispersion curves of 2-D PBG structure. The 
numerical results for isotropic medium are good agreement with that from traditional 
FDTD method. Then the dispersion curves for anisotropic media are provided respectively. 
Which show that both the TM wave in PBG structure with magnetic- anisotropic medium 
and the TE wave in PBG structure with electric- anisotropic medium, possess a enhanced 
bandwidth of the first band-gap and also an increment of the number of bandgaps, 
comparing to that PBG with isotropic medium. 
 
2.  Non-Yee Grid Higher Order FDTD 

In a Non-Yee grid the sampling point of both the electric- /magnetic- fields are 
placed at the center of grid; the spatial forward-difference for magnetic fields and 
backward-difference for electric fields are expressed as:  
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where  l = y or z;  b(-m-1)= -a(m) ,  m = -M-1,-M….�M-1, M . 
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In order to determine the coefficients {a(m)}, by means of a Taylor series 
expansion, a matrix equation with N-th order accuracy is formulated as:  
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and then be solved for the cases of : 
M=1, N=2 

a (1) a (0) a (-1) a (-2) 
0.3333333 0.5000000 -1.0000000 0.1666667 

M=2, N=3 
a (2) a (1) a (0) a (-1) a (-2) a (-3) 

-0.0500000 0.5000000 0.3333333 -1.0000000 0.2500000 -0.0333333 
M=3, N=4 

a (3) a (2) a (1) a (0) 
0.0095238 -0.1000000 0.6000000 0.2500000 

a (-1) a (-2) a (-3) a (-4) 
-1.0000000 0.3000000 -0.0666667 0.0071428 

M=4, N=5 
a (4) a (3) a (2) a (1) a (0) 

-0.0019841 0.0238095 -0.1428571 0.6666667 0.2000000 
a (-1) a (-2) a (-3) a (-4) a (-5) 

-1.0000000 0.3333333 -0.0095238 0.0178571 -0.0015873 
 
3.  Numerical Stability 

    By decomposing the Maxwell’s equations into temporal and spatial eigenvalue 
problems, and employing the non-Yee higher order spatial differences, a numerical 
stability condition is deduced as:  
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4.  Numerical Dispersion Relation 

Substituting the fields of monochromatic plane wave into the difference form  
of Maxwell equations, a numerical dispersion relation is formulated as:  
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Where θπσθπσ sin  ,cos == BA ; λσ /s∆= , xs ∆=∆  or y∆ ; λ  is wavelength; 

θ  is incident angle; stCq ∆∆= / , pc ντ /= , pν  is phase velocity, pk νω= .    



For given σ , q, θ , andτ corresponding to the phase error = (1-τ )×100%, by 
comparing the family of numerical dispersion relation curves, one can find that phase 
error in the 6-th order FDTD method (N = 6) is the smallest. For example, when 

10/1  ,8/1=σ , the phase error is less than 0.25%. 
 

5.  Numerical Results 

 In order to verify the feasibility and validity of dispersion characteristics of the PBG 
structure analyzed by using NY-FDTD method, a sample of PBG structure with 
isotropic medium is calculated at first. Its results are very agreement with that using 
traditional FDTD method (Fig.2). Then we turn to the calculated result of dispersion 
characteristics, shown as curves (Fig.3), of the PBG structure with anisotropic medium 
by using NY-FDTD method.  

 
 Case 1: A 2-D dielectric-rods PBG with relative permittivity 10.2=rε and 

dielectric filling ratio =β 0.18, the side length of its periodic square cell L=12cm, to 
calculate the k-f(ω) Brillouin diagram for TM wave propagation. 

 
   Case 2: A 2-D magnetic-anisotropic-rods, PBG with the constitutive relation 

2.10=rε  and 

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t , filling ratio =β 0.25, the side length of its 

periodic square cell L =12 cm, to calculate the k-f(ω) Brillouin diagram for TM wave 
propagation under the parameters  1   ,10 === zyyxx µµµ ; and (i) gyxxy == µµ  
(magnetic-crystal)  or  (ii) jgjg yxxy −== µµ    ,  (Ferrite), respectively. 

Fig.3 shows that the magnetic-anisotropic rods PBG can increase the width of first 
band- gap and increace the number of band-gap for TM wave propagation.  
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Fig. 2 Comparison between NY-FDTD and FDTD methods 
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 Fig.1 location of Fields  
in the non-Yee grid 

Fig. 3 Comparision between different media
by using  NY-FDTD method




