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1 INTRODUCTION

Spectral methods on unstructured grids developed in recent years provide a general,
practical, accurate and efficient tool to model large-scale broadband electromagnetic prob-
lems with complex geometry because of their versatility and flexibility, numerical stability
and spectral convergence. These new methods introduce a penalty term which is dependent
of the jump of fields across the interfaces of the elements to impose the boundary conditions
weakly rather than strongly as is classically done. This elegantly splits the differential op-
erator and boundary conditions, thus removing many problems associated with the analysis
of stable and accurate pseudospectral approximations.

In this paper, a staggered time integration technique is developed for the spectral meth-
ods to make them more efficient in computational time and memory. A method similar to
predictor and corrector methods is used in the staggered integration technique to overcome
the difficulty of the staggering of the boundary penalty term which is a key ingredient in-
troduced in the spectral penalty methods. Case studies validate the spectral methods and
the staggered time integration technique. Practical applications confirm the efficacy of the
staggered spectral methods to solve realistic problems in industry and engineering.

2 Formulation

To construct a spectral method on a general unstructured grid, the computational do-
main is discretized into a number of tetrahedra. By polynomial collocation methods, the
unknown fields E and H in each tetrahedron of the unstructured grids is assumed to be well
approximated as

E(x, t) ≈
N∑

j=0

Ej(t)Lj(x), H(x, t) ≈
N∑

j=0

Hj(t)Lj(x), (1)

where Ej(t) = E(xj , t), Hj(t) = H(xj , t), and Lj(x) is the 3D multivariate Lagrange
interpolation polynomial of order n associated with nodal points {xj} whose total number
is given by N = 1

6 (n + 1)(n + 2)(n + 3) to allow the polynomial basis to be complete.

The time integration of discretized Maxwell’s equations is performed element by element
in the spectral method. Thus, the numerical field values across the interface of any two
adjacent tetrahedral elements may not be consistent with the correct boundary conditions.
To ensure the correct boundary conditions, the change of the flux responding to the jump
is obtained by Rankine-Hugonoit jump conditions to satisfy the following relations [4]

n̂ · [F] =
{

(Z+ + Z−)−1n̂× (Z+[H]− n̂× [E])
(Y + + Y −)−1n̂× (−Y +[E]− n̂× [H]) , (2)

where [E] = E+−E− and [H] = H+−H− measure the jumps in the field values across the
interface, and superscripts ’+’ and ’−’ refer to the values from neighbor and local elements,
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respectively. Here Z denotes impedance and Y denotes conductance. Eq. (2) will act as the
penalizing boundary term in the following element-wise formulation for the electric fields

dE
dt

= (Mε)−1 V ×H + (Mε)−1 M(σE + J) + (Mε)−1 F
(
n̂× Z+[H]− n̂× [E]

Z+ + Z−

)∣∣∣∣
δD

, (3)

and likewise for the magnetic field

dH
dt

= (Mµ)−1 V ×E− (Mµ)−1 F
(
n̂× Y +[E] + n̂× [H]

Y + + Y −

)∣∣∣∣
δD

, (4)

where M ε
ij = (Li(x), ε(x)Lj(x))D , Mµ

ij = (Li(x), µ(x)Lj(x))D , Mij = (Li(x), Lj(x))D ,

Vij = (Li(x),∇Lj(x))D , Fij = (Li(x), Ll(x))δD . Eqs.(3)-(4) can be integrated by some
time-advancing techniques, such as the Runge-Kutta methods implemented previously.
Next, we will construct a staggered time integrator for the spectral method to save compu-
tational cost.

To introduce the staggered time discretization, we define electric field E at integer time
steps and magnetic field H at half time steps. And then central difference approximations
are used to advance E and H. Unfortunately, some information such as E at half time steps
and H at integer time steps in the right hand of Eqs. (3) and (4) is not available to complete
the central difference approximations. We propose the following method to overcome this
difficulty.

An intermediate values of E at half time steps are first estimated using a mixed difference
approximations (backward for magnetic-field terms and forward for electric-field terms),

En+1/2 =En +
∆t

2

[
(Mε)−1 V ×Hn+1/2 + (Mε)−1 M(σEn + Jn+1/2)

+ (Mε)−1 F
(
n̂× Z+[H]n+1/2 − n̂× [E]n

Z+ + Z−

)∣∣∣∣
δD

]
. (5)

where ∆t is the time step and the superscripts refer to the temporal indices. After obtaining
E at half time steps the central difference approximation is used to advance electric field E
to the next integer step as

En+1 =En + ∆t
[
(Mε)−1 V ×Hn+1/2 + (Mε)−1 M(σEn+1/2 + Jn+1/2)

+ (Mε)−1 F
(
n̂× Z+[H]n+1/2 − n̂× [E]n+1/2

Z+ + Z−

)∣∣∣∣
δD

]
. (6)

The advance of H is similar. First the intermediate values of H at integer time steps are
estimated as

Hn+1 =Hn+1/2 +
∆t

2

[
(Mµ)−1 V ×En+1

− (Mµ)−1 F
(
n̂× Z+[E]n+1 + n̂× [H]n+1/2

Y + + Y −

)∣∣∣∣
δD

]
. (7)

And then using the central difference approximation, the magnetic field H is advanced as

Hn+3/2 =Hn+1/2 + ∆t
[
(Mµ)−1 V ×En+1

− (Mµ)−1 F
(
n̂× Z+[E]n+1 + n̂× [H]n+1

Y + + Y −

)∣∣∣∣
δD

]
. (8)
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Now we estimate the error bound of the staggered time integrator. Assume the time
interval [a, b] is divided into N subintervals of equal length ∆t = b−a

N . The time integrator
can be expressed

TNf = ∆t[fa(a + ∆t/2) + fa(a + 3∆t/2) + · · ·+ fa(b−∆t/2)] (9)

which approximates the integration If =
∫ b

a
f(t)dt where fa(t) = f(t) + O(∆t2) is the

prediction of f(t). Using Taylor expansion, the error bounds are estimated as

|If −TNf | ≤ ∆t2
b− a

12
M2 where M2 := max {|f ′′a (t)− f ′′(t)| : t ∈ [a, b]} . (10)

Thus, the staggered time integrator is a 2nd-order scheme. Compared with 2 stage 2nd-
order Runge-Kutta methods, it requires about 1/4 less memory and 1/3 less CPU time and
is especially suitable for lower-order spectral methods.

3 Numerical Results

First the staggered time integration technique for spectral methods is validated by 5
stage 4th-order Runge-Kutta integration method for the radiation of an electric dipole source
located at the center of a cylinder. The cylinder of radius 0.3 m and length 0.6m has a relative
permittivity 2 and relative permeability 1. The dipole is polarized along +z direction and
has a time-function of the first derivative of Blackman-Harris window function with the
central frequency 600 MHz. A 3rd-order spectral method with staggered time integration
technique is exploited to model the electromagnetic radiation. The results shown in the
left figure in Fig. 1 illustrate that the numerical results agree well with those of the Runge-
Kutter integration method. The surface mesh of the cylinder is shown in the right figure in
Fig. 1.
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Figure 1: Validation of staggered time integration techniques. (a)(c): Ex and Ez at
(0.35m, 0.0m, 0.0m); (b)(d): Ex and Ez at (0.35m, 0.3m, 0.3m).

The scheme is then applied to model photonic bandgap materials. The scaffold structure
with lattice constant of 1.0 µm and dielectric width of 0.125 µm and dielectric constant 13
is modeled. The finite photonic crystal consists of 5 × 5 × 5 periods as in the left panel of
Fig. 2. A source is put on the center of one face of the cube and several observation points
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are put on the opposite face. Band gap of the photonic crystal is computed as shown in
the right panel of Fig. 2 by comparison of the spectrum of the received fields at observation
points with that of the source. The bandgap is clearly observed at the normalized frequency
band between 0.390–0.425.
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Figure 2: A photonic crystal of scaffold structure and its spectral response.

4 Conclusions

The spectral methods on unstructured grids developed in recent years provide a flex-
ible, accurate and efficient tool to model large-scale broadband electromagnetic problems
with complex geometry. In this paper, a staggered-time integrator is introduced in the
spectral methods to further improve their computational efficiency. A method similar to
predictor and corrector methods are used in the staggered time integration technique to
overcome the difficulty of the staggering of the boundary penalty term. Compared with
other 2nd-order time integration methods, it requires less memory and CPU time. Thus it
is especially suitable for lower-order spectral methods. Case studies of the radiation of a
electric dipole source in a cylinder validate the technique. Applications in the modeling of
photonic bandgap materials are shown to confirm the efficacy of the method.
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