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We give theoretical convergence rates for the surface current and backscat-
tering amplitude from an infinite, PEC circular cylinder associated with
typical moment method solutions to the magnetic and electric field in-
tegral equations. These results are then numerically compared to other
scatterer geometries.

1. Introduction

While the method of moments is a popular method used to solve many EM scat-
tering problems, understanding of its convergence is insufficient. Through Sobolev
theory, the mathematics community has proven that standard numerical methods
used in computational EM converge [1]. This paper adds to that work by provid-
ing simple error estimates for common moment method solutions which are less
general than previous theoretical results but are given in terms of norms frequently
used in engineering. The results are based on the authors’ previous work in [2] and
the studies of Warnick and Chew [3, 4].

The approach taken in this paper is to find analytical estimates for the relative
RMS surface current error and relative scattering amplitude error for the case of
an infinite, PEC circular cylinder, and then to compare the cylinder-based error es-
timates to numerically computed errors for other scatterer geometries, in order to
determine if the error behavior of non-circular scatterers is qualitatively and quan-
tititatively similar to that of the circular cylinder. We consider the electric field
integral equation (EFIE) and the magnetic field integral equation (MFIE) for a TM-
polarized incident plane wave.

2. MOM Error

For the method of moments, we employ pulse basis functions to expand the surface
current on the scatterer and Dirac delta functions for testing the incident field on the
scatterer. We consider both current error and scattering amplitude error. Current
error is defined in the RMS sense, so that
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whereN is the number of mesh nodes and,, is the difference at the mth node
between the exact surface current and the MoM surface current solution. Backscat-
tering amplitude error is the absolute value of the difference of exact and MoM
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Exact Integration Finite M Flat-Facet
MFIE RMS Current Error 0.9n; > 0.9n; > 1.5(ka)~tny’
MFIE Backscattering Errof 1.5n,° 1.5n,° ny '
EFIE RMS Current Error 2(ka)"2n;> (Mny)™! ny >
EFIE Backscattering Errorf  1.9(ka)~ny® | 1.4(Mny)~t | 1.6(ka)"In,?

Table 1:Theoretical relative error estimates for the method of moments applied to the problem of
a TM-polarized plane wave incident on a circular PEC cylinder. Point testing and pulse expansion
functions are usedn, = \/h is the mesh density, whereis the mesh element width. “Exact
integration” denotes exact integration over the pulse expansion functions, with exact (curved facet)
geometrical representatation. “Finilé¢” refers to the use of ai/-point Euler quadrature rule to
evaluate diagonal and off-diagonal moment matrix elements. “Flat-Facet” denotes a flat facet mesh
with exact integration of moment matrix elements. Note that these error estimates break down near
internal resonances of the cylinder. Error estimates valid at resonances are given in [2, 3].

solutions for the backscattering amplitude. It was shown in [2, 3] that the solution
error can be expressed in the fofitka)n, ", wheref(ka) is a function of the elec-
trical size of the scatterer, is the order of convergence, ang is the number of
mesh unknowns per wavelength, whese= A\ /h andh is the mesh element width.

We analyze the following three sources of error: discretization error, quadrature
error, and geometrical discretization error. It is found that these error contributions
can be characterized by the difference in the eigenvalues of the moment matrix and
the eigenvalues of the integral operator [3]. We consider only smooth scatterers.
Error for non-smooth scatterers can be found in [5].

Discretization Error.  Associated with any method of moments implementation
is discretization error caused by representing the integral equation operator in a
discrete basis. To analyze this source of error, we assume an exact geometrical
representation of the scatterer and exact integration of moment matrix elements.

Quadrature Error.  If moment matrix elements are evaluated with ahpoint

Euler quadrature rule, the MFIE solution error is only weakly sensitive to the num-
ber of quadrature points used. The exception to this rule is the case of a single point
quadrature rule, where solution error decreases dramatically, becoming third order
in ny. This is a special case that will likely not extend to a 3D MoM implementa-
tion.

Because of the singularity of the kernel, the EFIE is more sensitive to error
introduced by a finite quadrature rule. It is found that EFIE convergence becomes
first order inn, if the number of quadrature points does not increase proportionally
to n3. (Special integration rules such as non-classical Gaussian quadrature and
Duffy’s transform can decrease the number of required integration points.)



Geometrical Discretization Error It is a common practice to represent a curved
scatterer with a flat-facet mesh. If this is done, additional error is introduced to the
moment method solution. The MFIE is more sensitive to geometrical discretization
error than the EFIE, as the convergence rate decreases to first order for a flat-facet
mesh. This occurs because the first-order correction to the self-term of the MFIE
from the integral part of the operator is curvature-dependent, and so cannot be used
for a flat-facet mesh.

3. Extension to Other Geometries

In order to examine how error behaves for geometries other than the circular cylin-
der, we compute numerical errors for several smooth, non-circular scatterers, and
compare these to the theoretical circular cylinder error estimates described above.
The numerical error curves are generated by using a reference solution obtained us-
ing MoM on a high density mesm.{ ~ 300). The resulting computed error curves

are given in Fig. 1 for the nine scatterers shown in Fig. 2. Scatterer 1 is a circular
cylinder.
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Figure 1:MFIE RMS current error vs. mesh  Figure 2: Scatterers compared in Fig 1.
unknowns per wavelength for non-circular Though many of the scatterers have regions of
scatterers, with exact integration and exact ge- high curvature, they are all smooth. Scatterer
ometry. From the theoretical circular cylinder 1 is a circular cylinder. All scatterers have a
estimates in Table 1, convergence is expectedperimeter oBx .

to be second order.

The error convergence rate is the same for all of the scatterers, whereas the
absolute error constant is much larger in some cases. The largest initial errors are
obtained for scatterers 7 and 9, which have corner regions of large curvature. These
regions are close to edge singularities, which have been shown to decrease solution
convergence rates [5].



4. Conclusions

We have provided error estimates for the surface current and scattering amplitude
solutions to the MFIE and EFIE where the scatterer is a 2D circular cylinder. We
analyzed three error sources: the error associated with representing the integral
operator as the moment matrix, the error caused by a finite quadrature rule, and the
error associated with a flat-facet geometrical discretization.

With second-order convergence as a baseline convergence rate, better accuracy
(third order) is obtained for EFIE backscattering amplitude with exact geometrical
representation and exact integration of moment matrix elements, and for the special
case of MFIE with single point integration of off-diagonal elements and analytical
diagonal elements. Worse error (first order) arises with the EFIE for a finite point
guadrature rule for moment matrix integration, and with the MFIE for a flat-facet
mesh. We have also demonstrated numerically that other non-circular scatterers
have similar error convergence rates.
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