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Introduction 
Electromagnetic scattering from a dense medium consists of a large number of 
dielectric scatterers is of great interest.  In natural media such as snow and ice, 
densely packed and electrically small dielectric scatterers are randomly 
distributed in a host medium [1].  On the other hand, these scatterers can be 
arranged regularly, in a lattice form, in man-made materials such as the photonic 
bandgap structure [2].  For these dense media, multiple scattering and coherent 
wave mutual interactions must be taken into account and many exiting analytical 
and approximation theories may require the use of pair distribution function 
and/or configurational symmetries.  An alternative approach is to resort to more 
rigorous numerical methods such as the Method of Moments (MoM) at the 
expense of extensive CPU time and memory [3]. 
 
Recently, several approaches have been proposed for matrix size reduction [4]-
[5].  These approaches entail the analysis of partial domains of the original 
problem for the construction of Macro Basis Functions (MBFs).  These MBFs, 
however, do not take into account of mutual couplings among all the partial 
domains.  To incorporate mutual coupling effects, the use of Characteristic Basis 
Functions (CBFs) has recently been proposed [6], [7].   In this method, the mutual 
coupling effects are included through the use of higher-level basis functions, 
referred to the primary and secondary CBFs.   The coefficients of these CBFs are 
solved for directly using the Galerkin method.  In this paper, we implement the 
CBF method for dense medium scattering.  These CBFs, however, are constructed 
differently using the Foldy-Lax equations [3] in which mutual coupling effects 
among all scatterers can be included systematically.  Our results in this paper 
show that a small number of CBFs is sufficient. 
  

Construction of Characteristic Basis Functions 
Assuming that we have N dielectric scatterers that are distributed in a cubic 
volume and each scatterer is subdivided into m dielectric cells. The tensor integral 
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equation for the electric field inside the dielectric body can be transformed into a 
matrix equation using MoM as 
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where  and  are the induced volumetric current densiity and 

incident field sampled at the center of each cell, respectively, and 
iJ
r
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),2,1; NjN L= are 3m by 3m sub-matrices.  We can reduce this matrix size 

substantially through the use of characteristic basis functions obtained by the 
Foldy-Lax multiple scattering equations [3].  The equations state that the final 
exciting field of the i-th scatterer is equal to the incident field plus scattered fields 
from all scatterers except the scattered field from itself.  Using the Foldy-Lax 
equations, the primary CBF for each scatterer corresponds to the incident field 
only, and its construction ignores the scattered fields due to all other scatterers, as 
though the scatterer was isolated.  On the other hand, the first secondary CBF on a 
scatterer is computed by replacing the incident field with the scattered fields due 
to primary CBFs on all scatterers except from itself.  Similarly, additional 
secondary CBFs can be computed.  These CBFs are written as follows: 
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The primary CBFs can be derived easily using conventional matrix inversion and 
the secondary CBFs can be computed by backsubstitution after Zii are factorized.  
The matrix size in Eq. (1) is now substantially reduced when iJ

r
 is replaced by 

as the number of unknowns in each scatterer is now the number of CBFs 
employed in Eq. (5).  The new matrix elements are in the form of 

t
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with superscript T stands for the transpose operation. The 

same set of equations applies to the situation when a cluster of scatterers replaces 
each scatterer.  
 

Numerical Results 
To illustrate the efficiency and accuracy of the proposed method, we consider the 
scattering problem of 125 dielectric scatterers of 0.2λo x 0.2λo x 0.2λo in size with 



a dielectric constant of 4 randomly distributed in a volume of 2.154λo x 2.154λo x 
2.154λo, making the fractional volume 10%.  Each scatterer is subdivided into 64 
small cubes, yielding a total of 24,000 unknowns.  We compare our results against 
the sparse-matrix canonical grid method and both algorithms are implemented on 
a 16-PC cluster using Pentium III 667 MHz processors.  Figure 1 shows the good 
agreement in the x component of the current distributions computed by SMCG 
and the proposed method.  Figures 2 and 3 shows the convergence of the scattered 
fields Eφ and Eθ versus the number of CBFs, respectively.  Excellent agreement 
with results obtained from SMCG is demonstrated.  Comparison of the CPU time 
versus the number of CBFs is given in Table I.  The CPU time for the SMCG is 
1151 seconds.  For the SMCG method, we solve a matrix equation of 24,000.  In 
contrast, the proposed method requires solving a matrix equation of 64x3 = 192 
unknowns 125 times for each set of CBFs and a final matrix equation of 
125x4=500 unknowns for the weighting coefficients of the 4 CBFs.   
  

Acknowledgement 
This work was supported by the Hong Kong Research Grant Council, Grant 
9040528. 
 
References: 
 
[1] L. Tsang, J. A. Kong and R. Shin, Theory of Microwave Remote Sensing, Wiley, 

New York, 1985. 
[2] E. Yablonovitch, “Photonic crystals: semiconductors of light,” Scientific 

American, vol. 285, no. 6, pp. 47-55, Dec. 2001. 
[3] L. Tsang, C. E. Mandt and D. H. Ding, “Monte Carlo simulations of the 

extinction rate of dense media with randomly distributed dielectric spheres based 
on solution of Maxwell’s equations,” Optics Letters, vol. 17, no. 5, pp. 314-316, 
1992. 

[4] E. Suter and J. Mosig, “A subdomain multilevel approach for the MoM analysis 
of large planar antennas, “ Microwave and Optical Technology Letters, vol. 26, 
pp. 270-277, Aug. 2000. 

[5] L. Matekovits, G. Vecchi, G. Dassano, and M. Orefice, “Synthetic function 
analysis of large printed structures: the solution space sampling approach,” Dig. 
of 2001 IEEE Antennas and Propagation Society Int. Symp., pp. 568-571, Jul. 
2001, Boston, Massachusetts. 

[6] R. Mittra, K. Du, V. V. S. Prakash, J. Yeo, and S. J. Kwon, “Efficient simulation 
of MMIC and RFIC systems using a new matrix generation technique and the 
MNM iterative solver,” Workshop on EM-based CAD & optimization of 
waveguide components, planar circuits & antennas, 2002 IEEE MTT-S 
Microwave Symposium Workshop, Jun. 2002, Seattle. 

[7] J. Yeo, V. V. S. Prakash and R. Mittra, “An efficient MoM analysis of microstrip 
array antennas using the characteristic basis function method,” to appear. 

[8] B.-K. Huang, C. H. Chan, and L. Tsang, “Sparse-matrix canonical grid (SMCG) 
method for dense medium scattering,” IEEE Antennas and Propagation 
International Symposium, 2002 Digest, vol. 4, pp. 256-259, San Antonio, Texas, 
June  16 -21, 2002. 



 

 
Figure 1.  Comparison of |Jx| in selected locations.          Figure 2.  Convergence of  Eφ vs the 

_
Jt aJP+bJS1+cJS2+dJS3.
_

Jt=aJP+bJS1+cJS2+dJS3.

_
Jt aJP+bJS1+cJS2+dJS3.

0 30 60 90 120 150 180
-70

-60

-50

-40

-30

-20

-10

0

.Jt=aJP+bJS1+cJS2
Jt=aJP+bJS1---

=
SMCG_

 

 

20
lo

g|
E

φ
|

θ(φ=900)
128 136 144 152 160

0

100

200

300

400 . JS3JS2JS1_JP--- Jt....ο JSMCG_

 

 
A

m
pl

itu
de

 o
f J

x

Cell location

     numberof CBFs.  

0 30 60 90 120 150 180
-60

-50

-40

-30

-20

-10

0

.Jt=aJP+bJS1+cJS2
Jt=aJP+bJS1---

=
SMCG

 

 

20
lo

g|
E

θ
|

θ 0)
60 66 72 78 84 90 96 102 108 114 120

-70

-60

-50

-40

-30

-20

.- Jt=aJP+bJS1+cJS2---Jt=aJP+bJS1

SMCG_

 

 
20

lo
g|

E
θ
|

θ 0)
 )

 Figure 3.  Converge
                 curves. 
 

TABLE I.  COMP

 
 

Pt bJaJ +=
Pt bJaJ +=

Pt bJaJ +=

 
  
 

(φ=0
(a)
nce of Eθ vs the number of CBFs.  (a) Original curve

ARISON OF CPU TIME AND THE NORMALIZE
ORIGINAL MATIX EQUATION IN EQ. (1).

CPU time Norm

1SJ   128.11s    22.
21 SS JcJ +   171.29s     8.2

321 SSS JdJcJ ++   213.25s     2.5
(φ=0
(b
s and (b) enlarged    

D L-2 NORM OF THE 
 

alized L-2 norm 

46% 

3% 

9% 


	1Wireless Communications Research Center
	
	
	Introduction
	Numerical Results






