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1. Introduction

For the analysis and design process of (M)MIC structures, electromagnetic simulators based on the Method
of Moments (MoM) are widely used due to their high accuracy and good modeling capabilities which
have been accomplished over the last years. For the standard MoM using an explicit system matrix, many
improvements could be achieved for a faster and more accurate computation of the matrix entries. These
improvements are based on space domain evaluations as well as on spectral domain evaluations of the
matrix entries leading to a drastical reduction of matrix fill time. Thus, the solution of the linear systems of
equations typically remains the most cumbersome part of the MoM.

Here the worst choice in terms of computational effort is the use of standard Gaussian elimination tech-
niques with complete LU decomposition, leading to numerical complexities ofO(N 3). Therefore, most
contributions dealing with the treatment of MoM matrices favorize iterative solvers, where Krylov sub-
space methods are mainly in the scope of interest. Conjugate Gradient (CG) methods have been embedded
in CG-FFT methods circumventing the evaluation of the entire explicit system matrix. However, a direct
application of Krylov subspace methods to MoM matrices typically exhibits a bad convergence behavior,
especially with regard to a nonuniform structure discretization [1].

An important class of methods to improve the solution process was initialized by the diacoptic theory of
linear antennas. This theory is based on a component decomposition and is therefore not restricted to the
analysis of wire antennas but is particularly well suited for (M)MIC structures with its typical circuit com-
ponent subdivision. Diacoptic strategies are mainly based on the use of so-called Macro Basis functions
(MBs), leading to multilevel MoM implementations. In our contribution we first compare different versions
of the two-level approach in[3], combined with an advanced description of the macro basis function decom-
position. It is shown that the diacoptic entire basis function process in [3] is not the optimal choice due to its
high computational complexity and a modified diacoptic procedure with optimized matrix decomposition
and a block Jacobi iteration process is proposed.

Furthermore it is shown that the derived matrix decomposition can be used for a very effective precondition-
ing strategy applied to Krylov subspace methods. It results in excellent convergence properties without the
explicit current profile determination of the MBs, which is cumbersome or not reasonable in many cases.

2. Formulation

A typical section of a microwave circuit with components such as patches, junctions and inductors is given
in Fig.1. For diacoptic treatment of such structures we have to introduce additional artificial ports, e.g.
P1–P7 in Fig. 1. With these ports we subsequently introduce a block subdivision of the structure, leading
to 9 blocks B1–B9. Now we define MBs by allocating each port two blocks which are connected by this
port, e.g. port 1 connects block 1 and 2, port 3 connects block 3 and 5, etc.. If we excite each port with its
allocated blocks in absence of the other blocks using standard MoM, we get in this case a set of 7 MBs with
its current profiles. In the next step we formulate an upper level MoM by computing the self and mutual
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couplings of the MBs, leading to a 7× 7 matrix. The coupling of e.g. the MBsk andl is computed via

Zkl =
∑

m∈MBk

∑

n∈MBl

ImkZnmInl (1)

with Znm the entries of the lower level MoM,m ∈ MBk is the indexm of all basis functions allocated to
the MB numberk, Imk the current profile of thekth MB etc..

Solving for the amplitudes of the MBs and the subsequent superposition of the MB current profiles provides
the current distribution of the overall circuit without the need of solving the large system matrix using
standard MoM. However, the errors in the current distribution can amount to more than 10 percent compared
with the rigouros solution of the standard MoM since the remaining blocks are not considered during the
determination of the MB current profiles.

Fig. 1: Typical section of a microstrip circuit with additional ports P1–P7 and allocated blocks B1–B8.

Thus we have to apply a further iterative refinement process. In [3] a block Gauss-Seidel process is applied
to each MB. During this process also the remaining blocks are considered which leads to entire domain basis
functions called diacoptic functions. Although this method converges very fast in nearly all cases, it exhibits
several disadvantages. Since the diacoptic basis functions extend over the whole structure, complete matrix-
vector products must be performed within the block Gauss-Seidel process as well as for computing the upper
level matrix with eq.(1). This must be done for each MB, leading to aO(N 3) process. Nevertheless, the
procedure is about 10–30 times faster than a LU factorization of the whole system matrix, furthermore the
storage effort can be drastically reduced since only small parts of the system matrix are needed at the same
time.

On the other hand also a block Jacobi method was proposed in [3], based on the process

Zi · In+1 = U − Zc · In , Z = Zi + Zc (2)

leading to an improved current amplitude vectorIn+1 starting with an estimated amplitude vectorIn. Zi

is proposed a sparse block diagonal matrix containing the self and mutual couplings of each block forming
diagonal submatrices, whereasZc comprises all remaining mutual couplings. As starting vectorI0, the
current distribution derived by the compressed matrix eq.(1) is used. Unfortunately this process does not
converge in most cases. This is due to the fact, that the convergence condition

ρ(Zi−1
Zc) < 1

cannot be fulfilled with the chosen matrix decomposition whereρ(A) denotes the spectral radius of a matrix
A. This can be traced back to the fact, thatZc still contains couplings of overlapping basis functions. Thus,
the matrixZi must be extended in order to comprise all dominant couplings. In our approach, we split off
all couplings we have already needed to compute eq.(1).

For the structure in Fig. 1, the first part of the matrixZi up to the spiral inductor (block 6) reads:



Zi =




Z11 Z12 0 0 0 0
Z21 Z22 0 0 0 0
0 0 Z33 0 Z35 0
0 0 0 Z44 Z45 0
0 0 Z53 Z54 Z55 Z56

0 0 0 0 Z65 Z66




(3)

Here theZij represent submatrices which contain the mutual couplings between blocki and blockj. For the
application of eq.(2) we employ a Cholesky decomposition ofZi in case of pure microstrip or slot structures
(symmetric matrixZi). Subsequently for each iteration we have to perform a matrix-vector multiplication
Zc · In and a forward/backward substitution to obtain the improved current vectorIn+1. The algorithms
for the Cholesky decomposition as well as for the forward/backward substitution have been optimized by
means of analysing the individual structure ofZi depending on the circuit topology and block numbering.
Thus a further feature detects the grouping of the submatrices by forming upper level submatrices with
special treatment of possible matrix overlappings. This allows an adaptive Cholesky decomposition and
forward/backward substitution guaranteeing a minimum of computational effort to evaluate eq.(2) for a
given matrixZi.

Despite of the outlined extension ofZi compared to a pure block diagonal matrix we get an increasing
sparsity ofZi with an increasing number of blocks, where the diagonal dominance of the resulting matrix
Zi still depends on a proper block numbering scheme. The storage efficiency was further optimized by a
sparsification of the matrixZi (one-dimensional storage ofZi with additional index arrays). Possible fill-ins
during the Cholesky decomposition are automatically processed by an adaptive array extension and entry
updating. By theses measures the storage complexity can drastically reduced down toO(N), but requires
the repeated computation of the lowest level couplingsZmn during the matrix-vector multiplications.

Now the matrixZi and its Cholesky decomposition is also well-suited as a left and right preconditioner in
context with Krylov subspace iterative solvers applied to the equivalent linear system of equations

C−1Z C−T CT · I = C−1 · U
with C the lower triangular part of the Cholesky decomposition ofZi. Initially we have also used the
approximation ofI by the superposition of the MBs using eq.(1) as a starting vector. But further studies
have shown that the solution behavior of any Krylov subspace solver is nearly independent from the starting
vector even in the case of a starting vector close to the exact solution. Only very few iterations are needed
by simply using the normalized excitation vectorU as starting vector. This means that we can omit the
definition of additional ports and the direct determination of the MB current profiles which is cumbersome
in case of ports on wide transmission lines requiring a discretization over the width. Especially in the case
of an external wave excitation of the structure a reasonable MB definition seems not possible. Nevertheless
we still use a port definition in the input file to describe the connections between the blocks what is still
necessary for the composition of the matrixZi. Consequently, the macro basis function concept remains
inherent in the structure ofZi.

3. Application

As an application well-suited to illustrate the behavior of the different solution methods with increasing
number of unknowns, we have chosen a quadratic slot antenna array with coplanar feeding (1034 unknowns
with 6 elements, see Fig. 2 a)) on a silicon halfspace. On the right the required CPU-time for the different
solvers dependend on the number of array elements are given (1000 MHz AMD Athlon PC). Each element
is subdivided into two blocks (upper and lower half) thus each element just represents one MB leading to a
matrix Zi with a homogeneous submatrix structure. The diacoptic strategy according to [3] (two iterations
per MB, less than 1 per cent error in input impedance) already exhibits a drastical improvement against



a Gauss elimination whereas the block-Jacobi process (two additional iterations in eq.(2)) even shows a
much better numerical complexity. This is illustrated in detail in Fig. 2 c) demonstrating that Krylov sub-
space methods with preconditioner based onZi (here a Transpose Free Quasi Minimim Residual (TFQMR)
method [4]) show the best performance and accuracy (input impedance error<< 1 per cent) with 2–4 it-
erations. Implementations with a Conjugate Residual (CR) method or even a standard Conjugate Gradient
method show only a slightly decreased performance.

Fig. 2: a) Quadratic slot antenna array with coplanar feeding on silicon halfspace (dimensions inµm), b), c) required
CPU-time with different linear equation solving methods

References

[1] Vaupel, T., Hansen, V., Efficient (M)MIC-Structure Investigation Based On Fast Spectral Domain
Integral Equation Techniques, ANTEM 2000 Conference Digest, Winnipeg, Manitoba, 2000, S. 253–
256.

[2] Suter, E., Carlstroem, A., et al., A Multilevel Approach to The Efficient MoM Analysis of Large Scale
Planar Antennas, International Symposium on Antennas and Propagation Digest, Davos, Switzerland,
April 2000.

[3] Ooms, S., De Zutter, D., A New Iterative Diacoptics-Based Multilevel Moments Method for Planar
Circuits, IEEE Trans. on Microwave Theory and Techniques, Vol. 46, NO. 3, March 1998, pp. 280–
291.

[4] Freund, R. W., Conjugate Gradient-Type Methods For Linear Systems With Complex Symmetric Co-
efficient Matrices, SIAM J. Sci. STAT. COMPUT. Vol. 13, NO. 2, Jan. 1992, pp. 425–448, especially
p. 429.




