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Introduction 
A high-order method of moment solution for the electromagnetic scattering by complex 
objects with composite materials is presented.  The generalized technique can analyze 
material scattering by homogeneous and inhomogeneous material and conducting objects 
through both surface and volume equivalent currents.  The solution employs high-order 
basis functions and a quadrature point-based discretization.  It is shown that the solution 
leads to high-order convergence for the electromagnetic scattering by heterogeneous 
scatterers.  This is validated here through the study of canonical scattering structures. 

Formulation 
Consider the electromagnetic interaction with an inhomogeneous material scatterer made 
of a composite of penetrable and conducting materials.  A surface separating volumes iV  
and jV  is denoted as ,i jS .  Let ,i jS +  denote the surface just inside Vi, and ,i jS −  denote the 
surface just inside Vj.  Equivalent current densities are then placed on all surfaces 
separating each material volume.  These are defined as: 
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where ˆin  and ˆ jn  are the unit normal directed into iV  and jV .  Since ˆ ˆj in n= − ,  
 , , , , , ,,i j i j i j i j i j i jJ J J M M M+ − + −= − = = − =

G G G G G G
. (2) 

On the surface of a conductor, only the electric current density is supported.  Thus, 
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Each material volume is assigned a background material profile ( ),ib ibε µ .  If 
( ) ( ), ,i i ib ibε µ ε µ≠ , this results in the need of an equivalent volume current density, 
expressed as: 
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where ( ),i iε µ  are the permittivity and permeability of the physical material medium.   
If ( ) ( ), ,i i ib ibε µ ε µ= , the volume current densities are identically zero.  If 

( ) ( ), ,ib ib jb jbε µ ε µ= , the equivalent surface current density on ,i jS  is zero. 
The surface and volume equivalent current densities in iV  radiate in an equivalent 

homogeneous material volume of profile ( ),ib ibε µ .  The scattered field radiated by the 
equivalent currents in iV  is expressed as: 
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where 
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and Ω  is either a surface or volume, I is the unit diad, ( ) | |, / 4 | |ibjk r r
iG r r e r rπ′− −′ ′= −

G GG G G G , 

ib ib ibk ω ε µ=  and /ib ib ibη µ ε= .   
A hybrid surface/volume integral formulation is then derived by enforcing the 

appropriate constraints on each boundary and/or each volume. A combined field 
formulation is applied on material surfaces [1, 2] (or the PMCHWT formulation [3]): 
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where ,inc inc
i iE H
G G

 are radiated by impressed sources in region i and ,scat scat
i iE H
G G

 are 
radiated by equivalent currents in volume iV  (similarly for subscript j). On the surface of 
a perfect conductor, a combined field integral operator (CFIE) is applied [4]:  
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Finally, in regions where the volume currents are non-zero, the constraints applied are:   
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where ir V∈G .  

Discretization 
The volume and surfaces are discretized using curvilinear cells that represent all 
boundaries and material parameters to high-order accuracy.  In this work, curvilinear 
hexahedron and curvilinear quadrilaterals are used.  The basis functions are defined as the 
product of one-dimensional Legendre polynomials with support limited to the cell.  Thus, 
a set of basis functions complete to polynomial order p-1 are defined for an individual 
cell as: 
 ( ) ( ) ( ) { }1 2 1 2/ , , (0,1); (1,2); , (0, 1)n i j kj r a P u P u g u u i j k p= ∈ ∈ ∈ −
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for quadrilaterals, and 
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for hexahedra, where, ( )lP u is the l-th order Legendre polynomial mapped over the range 
of (0,1), and iaG  are unitary vectors [5]. 

A quadrature rule is defined for each cell.  For quadrilateral and hexahedron, the 
quadrature rule is conveniently defined via a product rule of one-dimensional Gauss-



Legendre quadratures.  At each quadrature point the unitary vectors are used for the test 
vectors.  This leads to a total of 33p  constraints per volume cell and 22 p  constraints per 
surface cell.  The method of moment formulation is then derived via point-matching at 
each quadrature cell with the test vectors, as described in [6-9].   

Validation 
To validate the above technique, first consider the scattering by a 10 cm radius PEC 

sphere coated with a lossy dielectric layer.  The coating is 1 cm thick and is defined by a 
relative permittivity 9 0.3r jε = −  at 1 GHz.  The surface of the PEC sphere is discretized 
with 54 fourth-order curvilinear quadrilaterals.  A 3 3× -point Gauss-Legendre quadrature 
rule is defined on each patch.  Initially, the background material of the layer is chosen to 
be free space.  This results in volume equivalent currents only.  To this end, a single layer 
of 54 fourth-order curvilinear hexahedron with 3 3 3× × -point quadrature rules were used 
to represent the volume equivalent currents.  Next, the same structure was simulated by 
choosing the background material 9 0.3rb jε = − , leading to surface equivalent currents 
only.  These were represented by 54 fourth-order quadrilateral cells again with 3 3× -
point Gauss-Legendre quadrature rules defined on each patch.  The RCS calculated by 
both simulations is illustrated in Figs. 1 (a) and (b) for V-V and H-H polarizations.  The 
VIE formulation has a mean error of 310−∼ , whereas, the surface formulation 
(PMCHWT) has a mean error of 210−∼ . 

Next, consider the scattering by a PEC ogive coated with material layers.  The PEC 
ogive had a 0.3 m diameter at the center and a 0.6 m length.  The ogive was coated with 
two homogeneous dielectric coatings with outer dimensions (0.5  m,0.7 m)  and 
(0.7 m,0.9m) , respectively (referring to center diameter and major axis).  For the case 
presented, the inner layer was free space and the outer layer was a dielectric with a 
relative permittivity 4rε = .  The background materials were chosen to be free space, and 
volume elements were subsequently used to model the material coating and surface 
elements used to model the surface currents on the PEC (illustrated in Fig. 2).  The 
convergence of the RCS at 300 MHz for various orders and a fixed discretization is 
illustrated in Fig. 3.  The mean deviation of the two higher discretizations is on the order 
of 0.1 dB.   
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 (a) (b) 

Fig. 1 Bistatic RCS of the coated PEC sphere at 1 GHz in the 0φ =  plane computed via the 
hybrid VIE/CFIE and PMCHWT/CFIE methods.  (a) V-V, and (b) H-H polarizations. 

 
 

 
Fig. 2 The surface mesh of the coated ogive 

illustrating the curvilinear quadrilateral 
cells. 

 
Fig. 3 The RCS of the coated ogive for increasing 

order.  The first two orders are along the 
transverse directions (surface and volume 
cells).  The third order is along the normal 
direction for the volume cells. 
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