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I - INTRODUCTION 

As solving wave-structure interaction problems with the FDTD method, the 
perfectly matched layer (PML) absorbing boundary condition (ABC) can be set 
quite close to the structure of interest [1], so that the overall computational 
domain is widely reduced in comparison with previously used ABC’s. 
Nevertheless, the PML must be some cells in thickness and it typically consumes 
20-50 % of the overall computational time. It would be desirable if this thickness 
were reduced. From theoretical investigations in [2], the complex frequency 
shifted (CFS) PML [3] is a candidate in view of achieving such an objective. This 
is illustrated in the present  paper by means of numerical experiments with three-
dimensional structures. 

II - THE CFS PML 
In the CFS PML, the stretching coefficient of the normal PML is replaced by 

εωα
σκ

j
s

x

x
xx +
+=  ,                                                      (1) 

where αx is homogeneous to a conductivity and κx is real. An effective FDTD 
discretization has been proposed in [4] and the features of the numerical 
reflection from this PML have been discussed in [2]. From (1), frequency 
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is a key parameter. For f >> fα  the CFS PML acts as a normal PML. Conversely, 
for f << fα  coefficient (2) is real so that the CFS PML only acts as a real stretch 
of coordinates (κ x + σx / αx). From this, for f << fα  traveling waves are not 
absorbed, but evanescent waves can be annihilated by the real stretch. 

III - WAVE-STRUCTURE INTERACTIONS 

Schematically, the field surrounding a PEC structure struck by an incident 
wave is composed of evanescent fields, below the resonance frequency, and 
traveling waves, above the resonance frequency. By assuming that the evanescent 
fields decrease to a small value upon a distance of the order of the largest size of 
the structure w, one can arrive to the following optimum parameter αx [2] 
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Then, the absorption of low frequency evanescent fields is about equal to the 
absorption of traveling waves [2]. This allows a reasonable absorption of 
evanescent fields to be achieved, resulting in a small numerical reflection of these 
fields. Moreover, (2) and (3) yield fα(α0) = f0 / π, where f0 is the resonance 
frequency c/2w, so that the transition between the two regimes of the CFS PML is 
about the transition between evanescent and traveling waves surrounding the 
structure. From this, all the surrounding waves are absorbed by the CFS PML 
with sufficient and not too strong absorption [2].  

IV - NUMERICAL EXPERIMENTS 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 - E field at two locations on a 500*50*0-cell thin plate (∆x = ∆y = ∆z = 1 cm) 
computed with 4, 6, 8, and 12 cells thick CFS PMLs (αx = α0). 

 
Fig. 3 compares the 500-cell plate results obtained using the 6-cell CFS PML, 

with results in paper [5] that describes an easy implementation of optimum 
normal PMLs in three-dimensional computer codes. Two PMLs are compared 
with the CFS PML, a 10-cell normal PML [5], and a 9-cell normal PML with 
some refinements (the so-called A interface and a slight real stretch of 
coordinates, see [5]). As observed, the 6-cell CFS PML yields results at least as 

As in two dimensions [2], three-dimensional experiments with CFS PMLs 
easily show that the best results are obtained with αx in the range α0 / 2 to 2 α0. 
All the results shown in this paper were computed with αx = α0, and PMLs -
either normal or CFS - set only two FDTD cells from the scattering structure. 

Fig. 1 shows the E field at two points on the surface of a 500 cells thin plate
struck by a unit-step incident wave [5], for 4, 6, 8, 12 cells thick CFS PMLs. The
conductivity is quadratic and R(0) = - 40 dB. As observed, the numerical 
reflection is small with a 4-cell CFS PML, and negligible with an 8-cell one. 
Fig. 2 shows similar experiments with the 126*237*60-cell airplane in [5]. 



good as those of the 10-cell and 9-cell normal PMLs. Fig. 4 shows a similar 
comparison for the airplane. For this structure, the 4-cell CFS PML yields results 
as good as the 7-cell or 5-cell normal PMLs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
The observations in the above figures can be reproduced with other structures 

and other time-domain forms of the incident wave. With (3), the CFS PML that 
allows a given level of accuracy to be obtained (acceptable results as in Figs. 3 
and 4, or perfect results superimposed to the reference) is thinner than the normal 
PML, even when this last one is optimized by the method in [5]. Notice that the 
advantage of the CFS PML grows with the duration of the calculation since the 
thickness of normal PMLs grows with this parameter [1], [5].                                

Fig. 2 - E field at four locations on a 126-237-60-cell airplane (∆x = 25 cm, ∆y = ∆z = 
16.66 cm)  computed with 3, 4, 5, and 6 cells thick CFS PMLs (αx = α0). 

good as those of the 10-cell and 9-cell normal PMLs. Fig. 4 shows a similar 
comparison for the airplane. For this structure, the 4-cell CFS PML yields results 
as good as the 7-cell or 5-cell normal PMLs. 

Fig. 3 - Comparison of results computed using the 6 cells thick CFS PML with
optimized PML and PML-A in [5], for the 500-50-0-cell plate. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 - Comparison of results computed using the 4 cells thick CFS PML with 
optimized PML and PML-A in [5], for the 126-237-60-cell airplane. 

V - CONCLUSION 

By an adequate choice of parameter αx, the CFS PML allows the PML 
thickness to be reduced in comparison with normal PMLs. Moreover, since it has 
been recently introduced, some progress can be hoped for. Especially, it would be 
desirable if the critical parameters that impact the accuracy were found, so as to 
be able to design the PML in function of the structure of interest, as can be done 
with normal PMLs [1], [5].  

From a practical point of view, significant reductions of computational 
requirements can be expected, probably in the range 10-25 % in comparison with 
optimized normal PMLs [5]. Nevertheless, further investigations are needed so as 
to render the use of the CFS PML as easy and reliable in applications as normal 
PMLs  with implementation [5].  
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