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Abstract

This paper starts with a very brief review of FIT [1], [2] on triangular grids [3], [4]. Next, it reports about some recent
features in FIT to minimize the geometrical error while keeping the number of grid points as small as possible. Finally, a
method is introduced to compute scattering properties and/or resonant fields in complex rf structures by combination of domain
decomposition with any available CEM tool. We denote this method as Coupled S-Parameter Calculation [5]. Some examples are
presented underlining the power of the methods described.

I. I NTRODUCTION

Simulating electromagnetic fields in rf components, users are interested in consistent codes that allow for a good geometrical
discretization of the structure under study, reaching most accurate results while keeping the storage and computing time
requirements as low as possible. Storage became cheaper and cheaper over the last decades and clock rates raised rapidly
following Moore’s law. Yet, in the course of rapid prototyping the demand to compute more and more complex structures grew
with the same speed, at least. In the beginning of the eighties of the last century it was possible to run problems with about
103 − 104 number of unknowns on main frames. At that time it was worth to put effort in more sophisticated grids than a
usual Cartesian grid. As an example, we will describe an implementation based on FIT with a triangular-hexagonal grid pair.
Meanwhile, after extensive studies it seems most practicable to use Cartesian grids with a so-called conformal approach to
approximate material boundaries. In cases where very complex structures shall be studied or where parameter studies for parts
of a structure shall be carried out a high geometrical resolution can be reached or much computing time can saved by using
domain decomposition. One approach, described here, to receive results for the complete structure from single computations
for sub-domains is called Coupled S-Parameter Calculation. This approach also allows to set up databases for typical sub-
components and thus to reuse computational results. It is possible to combine analytical as well as 2D and/or 3D numerical
computations. With this methodology total numbers of unknowns in the order of107 and higher can be handled on usual
workstations or small servers.

II. F INITE INTEGRATION TECHNIQUE (FIT)

The Finite Integration Technique yields anexactrepresentation of Maxwell’s equations in integral form on a grid duplet(G, G̃),
denoted asMaxwell-Grid-Equations:
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The operatorsC, C̃, S and S̃ can be interpreted as discrete curl operatorsC, C̃, discrete divergenceS, S̃ and discrete gradient
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The FIT grid duplet(G, G̃) is not coordinate-bounded, not necessarily orthogonal, not necessarily regular.

A. Classical FIT on a Triangular Grid

Two decades ago, FIT with triangular primary grid was implemented in a program called URMEL-T [3]. The electric voltages
are allocated on the triangular gridG and the magnetic voltages on the dual gridG̃ as in Fig. 1 or vice versa. Optimally, the
mesh generator can set up a completely orthogonal dual gridG̃⊥ composed of the perpendicular bisectors of the elementary
lines Li. Then, the intersections of the perpendicular bisectors, the circumcenters, give the dual grid pointsP̃i. Its elementary
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areasÃi in the grid plane are general hexagons, cf. Fig. 1.G̃⊥ is a Delaunay-Voronoi mesh. For this dual-orthogonal FIT grid
the continuity of tangential electric field and normal magnetic flux is preserved on all boundaries of different materials. Only
if all triangles of the grid are acute or right-angled in the field carrying domain,P̃i lies inside thei-th triangle. Often, obtuse
triangles occur near material boundaries. In that case the circumcenters are chosen forP̃i in all acute triangles and barycenters
in the (usually very few) obtuse triangles. Then, the approximation orderp is locally reduced to first order, overallp typically
still has a value close (but smaller than) two.
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Fig. 1. Classical triangular FIT grid with its dual (hexagonal) grid, and some of the electric and magnetic state variables. The two kinds of primary cells
are highlighted each. Right: Triangular grid for the right upper quarter of a cylindrically symmetric multicell rf resonator’s cross section.

B. Conformal FIT

Since the numerical effort and the implementation effort for non-Cartesian grids is highly increased a diagonal filling of grid
cells was used since long together with FIT. This already leads to much better and less oscillatory convergence as function
of step size than the (still) usual FDTD staircase approximation. Yet, in order to reach an approximation order of two more
sophisticated approaches are necessary. In [6] a strategy, now called Conformal FIT (CFIT), is introduced which - independently
of the actual grid resolution - takes the actual material filling on boundaries into account when setting up the material matrices.
It is implemented in CST Microwave Studior[7] used for the simulation displayed in Fig. 2. Thus, second order is reached
allowing for rather accurate results even with rather coarse meshes. A simpler version of partially filled FIT cells was first
introduced in [8] in context of some multigrid solver (cf. [9]).
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Fig. 2. Left: Geometry of coupler attached at the TESLA accelerating structure to damp parasitic higher order modes (HOMs). Middle: Detail. Right:
S-parameters for signals between the coaxial port (top) and the beam pipe (right). Two polarization modes exist at each port.

III. C OUPLED S-PARAMETER CALCULATION (CSC)

Motivated by some previous work with the semi-analytical mode matching technique [10] we followed a similar approach of
subdividing complex rf structures in simpler sub-objects for which the scattering parameters are computed either analytically
or numerically, e.g. with available codes based on FIT. Herein, the S-parameters describe signal reflection and transmission
between then ports of a given rf-component. As standard, they are represented by an (n×n)-matrixS where entrySij describes
transmission of a signal from portj to port i. In general, it is a complex function of the frequency containing information
about phase and amplitude. Withak andbk describing the input and output signals of thek-th sub-object, the matrixSk forms
the relationbk = Sk(ω) ak.

The Sk of all sub-objects are arranged in a block diagonal matrixS combining the vectora of all incident signals with
vectorb of all scattered signals, cf. also [11]:
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All signals incident in the full structure are collected in a vectorainc whereas those signals travelling from one sub-object
into a neighbouring one are grouped together in the coupling vectoracop. This reordering is done by a permutation matrixP:

a = P
(
acop

ainc

)
. (4)



The feedback inside the system, namely the fact that the outgoing signals of one port are incident signals at another port, is
described by a feedback matrixF; signals leaving the system are kept untouched. The inverse permutation ensures the same
order of the scattered signals as in (4): (

acop

asct

)
= P−1 Fb. (5)

Combining (3), (4) and (5) results in the following matrix-vector-equation:
(
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)
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)
, (6)

whereG = P−1 FSP describes the structure of the whole system.G can be split into four block matricesGij according to
the dimensions ofacop, ainc andasct. Thus, (6) can be written as the following system of matrix-vector-equations:

acop = G11 acop + G12 ainc, (7a)

asct = G21 acop + G22 ainc. (7b)

The coupling between the signals is then given byasct =
(
G21 (1−G11)−1 G12 + G22

)
ainc. Becauseainc and asct

represent the incident and reflected waves at the external ports

S(TOT ) = G21 (1−G11)−1 G12 + G22 (8)

denotes the overall S-matrixS(TOT ) of the entire structure.
If all external ports are closed the structure becomes a resonator and only the coupling between the internal ports remains:

dim(asct) = dim(ainc) = 0. The block matricesG12, G21 andG22 vanish and (7) reduces to

(1−G11(ωk))a(k)
cop = 0. (9)

Eq. (9) is only fulfilled for a discrete spectrum of resonant frequenciesωk with corresponding amplitude distributionsak. Their
determination is explained in detail in [5].

IV. EXAMPLE

As example, we regard a chain of slightly deformed cells of a multicell rf resonator like foreseen as superconducting
accelerating structure in the TESLA project [12]. As more than 20,000 of those 9-cell resonators are foreseen for the high
energy collider, the affordable tolerance is a major design criterion with various implications. One important point is the
successful damping of parasitic higher order modes. In this context, we studied the effect of slightly elliptically deformed,
twisted multicell structures with CSC. The single resonator cells were taken as sub-objects. It is sufficient to compute the
S-parameters of the single (deformed) cells once, as long as we assume identical deformation for all cells. We used CST
Microwave Studior[7] which is based on CFIT for the field simulation in the single cell.
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Fig. 3. Successive rotation of elliptically deformed TESLA-cells. Between the cells a vector indicates the local reference system; at the right end the reference
system is rotated back to its original position.

The modeling of the rotation from one cell to the other is carried out introducing intermediate rotational objects (cf. Fig. 3).
They represent a section of length zero rotating the reference plane by some angleϕ:

Mϕ =




0 0 cos ϕ sinϕ
0 0 − sin ϕ cos ϕ

cos ϕ − sin ϕ 0 0
sin ϕ cos ϕ 0 0


 . (10)

In the following, we choose the angleϕ to be identical for all cells. A rotation object with angleϕs = −(n− 1) ϕ (n being
the number of cells) is inserted between the last cell and the terminating short circuit in order to rotate the reference plane of
the modes back to the initial reference system.



The rotation angleϕ is varied in the range of0 . . . 90◦ in steps of2◦. Figure 4 shows the resonant frequencies of a 4-
cell resonator in the frequency range of2.50 . . . 2.57 GHz. At ϕ = 0◦ six separate modes, each in pairs, can be found. A
degeneration of the polarization modes occurs atϕ = 90◦ such that only three resonant frequencies remain. The highlighted
mode shows an additional degeneration at a rotation angle of about50◦
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Fig. 4. Left: Resonant frequencies as function of the rotation angleϕ. Especially highlighted is the frequency curve of mode no. 4 (related toϕ = 0◦).
Right: Rotation in polarization of theH-field in the port planes of a 4-cell chain built from deformed TESLA cells. As example, mode 4 is chosen at angles
0, 30, 60 and90◦ (cf. Fig. 3).

Besides the frequency shift of the eigenmodes the rotation of cells inside the resonator directly influences the field distribution
of the modes. Figure 4 shows amplitude and orientation of theH-field of the highlighted mode in Fig. 3 - shown is a full
period in the location of the port planes (left to right). Additionally, the start is marked by some point in order to better
illustrate the phase relation of the signals. Forϕ = 0◦, |H| has minima in port planes 2 and 4 and maxima in planes 1, 3 and
5. In plane 3, the field oscillates antiphase to the two outer ones. In all planes the mode shows linear polarization.

This basic form of the mode keeps unchanged if the rotation angleϕ is varied. Yet, the field in planes 2 and 4 is no longer
vanishing exactly. Additionally, forϕ = 30◦ and 60◦ the mode evidently shows an elliptic polarization in both outer port
planes. Forϕ = 60◦, a rotation of the principal ellipse axis can be observed, too. Both, elliptic polarization and rotation of
polarization plane, can no longer be observed atϕ = 90◦ where, though, a non-vanishing field remains in the knot planes.

V. CONCLUSION

A variety of very reliable tools for electromagnetic field simulation based on the Finite Integration Technique, FIT, have
been developed over the years. Their application range can successfully be further extended by use of the Coupled S-Parameter
Calculation, CSC, allowing simulations for very complex rf structures by exploiting symmetries and repetitions of sub-objects.
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