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Introduction

In the past, several research groups have observed, both numerically and experimen-
tally, unusually high optical transmission through metal films loaded with periodic
arrays of small holes [1]. This enhanced transmission was attributed to the interac-
tion of the incident field with surface plasmon polaritons (SPPs) [1-2], viz. surface
waves on the boundary of a half-space with negative permittivity. In the optical
regime, several metals indeed support SPPs [2]. In contrast, in the RF regime, met-
als can be safely modeled as electric conductors with or without losses and do not
support SPPs. Thin perfect electric conductor (PEC) plates loaded with regular ar-
rays of small (subwavelength) holes have small transmission coefficients [3]. To the
best of our knowledge, no enhanced microwave transmission through such plates
has been reported in the open literature. The goal of this study is to formulate con-
ditions under which enhanced transmission through periodically perforated PEC
plates nonetheless may be achieved.

“Two period” array of small holes
As an example of a perforated PEC plate
that allows for enhanced transmission, con-
sider the ”two-period” structure depicted
in Figure 1. It comprises of wide bands of
doubly- and equi-periodic, orthogonal ar-
rays of small square holes that are sepa-
rated by narrow strips of solid PEC. The
small holes have side length s and periodic-
ity a, with s< a¿λ (λ is the wavelength).
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Figure 1: Problem configuration

The PEC strips have width L−d and periodicity L. In what follows, a and L are
referred to as the small and large period, respectively. This “two-period” array is
excited by a TMz plane wave with transverse wavenumber kx0 and magnetic field
along the PEC strips. Enhanced transmission is possible for certain ranges of a, d,
L, and kx0.

The proposed structure is motivated by the following observations. It is known
that a PEC plate loaded with a dense and regular doubly periodic array of small
holes can support a TMz surface wave (SW) [4]; it follows that such a plate can be
modeled accurately by an inductive impedance surface [3]. The purpose of the small
period structure in the above “two-period” grating therefore is to support a SW.
The large-period grating has dual functionality: (i) it couples the incident field into
the SW on the small-period structure and (ii) subsequently provides a mechanism
for diffraction and re-radiation of the SW into the zeroth-order transmitted mode.
The SW therefore acts as an “agent” that facilitates transformation of the incident
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into the transmitted field. This process can lead to full transmittance for a narrow
range of frequencies, as discussed below.

Simplified model - periodic impedance surface

The above “two-period” structure can be modelled by a periodic impedance sur-
face that is obtained after replacing the doubly-periodic bands of square holes by an
impedance surface. This simplified structure therefore comprises of a singly-periodic
array of period L of wide surface impedance strips of width d that are separated by
narrow PEC strips of width L−d. This structure can be analyzed via conventional
expansion of the fields over the spatial harmonics with appropriate boundary con-
ditions on the surface impedance and PEC strips [5]. Doing so leads to the matrix
equation for the diffraction coefficients
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Here η = 120π and k0 = 2π/λ is the free space impedance and wavenumber, re-
spectively; Ys is the surface admittance; Tn and Γn are the nth harmonic diffraction
(transmission and reflection) coefficients; Pm,n is the coupling matrix; and Zn and
kxn are the characteristic impedance and wavenumber of the nth spatial harmonic,
respectively. Although Eqs. (1) provide a complete solution to the problem, for de-
sign purposes, it would be to our benefit to also have explicit and physically trans-
parent expressions for the transmission coefficients and the locations of its maxima
and minima. To this end we only retain the zeroth and first harmonics in equations
(1). This is allowed since these harmonics are excited much more strongly than all
others when kx1 ≈ kp (kp being the surface wave wavenumber). For simplicity we
also assume a normal incidence kx0 = 0. Then the approximated transmission coef-
ficient (denoted by T̃0) is given by

T̃0 = 1− 1 + 2ZsY1P̃1,1

[1 + 2ZsY0P0,0][1 + 2ZsY1P̃1,1]− 4Z2
s Y1Y0P1,0

˜P0,1

, (2)

where P̃1,1 = P1,1 + P1,−1 and P̃0,1 = P0,1 + P0,−1; Yn = Z−1
n is the nth harmonic

characteristic admittance; Zs = Y −1
s is the surface impedance. Solving (2) for L

when T̃0 = 1 and T̃0 = 0, the conditions for the “full” and “zero” transmission can
be readily found
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Note that these phenomena occur for values of L around L
λ = k0

kp
= [1− (

2
Ysη

)2]−1/2,
where kp is the SW wavenumber, indicating the importance of the SW. However,
mathematically, due to the fact that P̃1,1 < 1 and, physically, due to interaction of
the SW and the incident field, these locations are shifted.



Numerical examples

We first verify the existence of the SWs. Consider the structure in Figure 1 where
we leave only the doubly periodic array of small period a. We choose s = 3mm
and a = 4.5mm. We also choose the wavelength λ = 30mm (i.e. λ/s = 10). We
then calculate the TMz transmission coefficient T0,0 via the method of moments
with periodic Green’s function [6]. The corresponding surface impedance can be
calculated then via the transmission line model.

Figure 2(a) shows the real and imaginary parts of T0,0 as a function of kx0 for
both the propagating (kx0 ≤ k0) and evanescent (kx0 > k0) spectra. We find that
around kx0/k0≈1.01 the magnitude of T0,0(kx0) exhibits a pole type behavior that
is an evidence of the SW existence. Figure 2(b) depicts the corresponding surface
impedance Zs which is inductive since ImZs > 0.

We then consider the “two period” structure in Figure 1 where the hole size s and
the small period a are the same as in the previous example and the large period is
chosen L = 31.5mm (i.e. each eighth hole is replaced with the PEC). Figure 3(a)
shows the zero order transmission coefficient as a function of the ratio L/λ. The
same figure shows the similar results for the periodic impedance surface with period
L and surface impedance Zs = 10.5Ω. We give both the “exact” result calculated
via (1) and the approximate result calculated via (2).

We indeed observe the “full” and “zero” transmission in Fig. 3(a) as predicted. We
find also that the results for the “two period” structure are similar to those for the
periodic impedance surface model. However in the former case the transmission is
weaker and wider that can be explained by stronger interaction with higher order
modes. The exact results via (1) for the periodic surface matches well the approxi-
mation (2). Note that the locations of the maximum and minimum are close to the
ratio L

λ = 0.9985 corresponding to the SW but they are shifted right.

Finally in Figure 3(b) we show the excitation coefficients of the first order mode and
find that the location of its maximum matches the location of the “full” transmission
in Figure 3(a). Again the results for the “two period” structure and the periodic
impedance surface are similar.
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Figure 2: Simulation for doubly periodic structure with small period a: (a) Reflection
coefficient as a function of kx0; (b) Corresponding surface impedance
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Figure 3: Transmission coefficients (a) T0,0 and (b) T1,0 as a function of the ratio L/λ for
L = 31.5mm




